|
|
Adaptive crow search algorithm based on population diversity |
Jie-guang HE1( ),Zhi-ping PENG2,3,De-long CUI1,Qi-rui LI1 |
1. College of Computer Science, Guangdong University of Petrochemical Technology, Maoming 525000, China 2. School of Information Engineering, Jiangmen Polytechnic, Jiangmen 529030, China 3. Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming 525000, China |
|
|
Abstract A new adaptive crow search algorithm was proposed to solve the shortcomings of the original crow search algorithm, such as weak control of population diversity, single updating of individual position and low precision of local search. Firstly, multiple search-guided individuals were designed, and an adaptive selection strategy of search-guided individuals was realized based on population diversity at different stages of evolution. The global exploration in the early iteration and local exploitation in the late iteration were achieved using the strategy. Secondly, by combining the idea of sine-cosine search, several flight length control parameters based on linear decline or mixed sine-cosine oscillation decline were used to constructed different search modes for improving the search ergodicity of the algorithm and increasing the probability that the algorithm finding a better solution in the late iteration. Thirdly, to verify the effectiveness of the new algorithm, standard test functions were selected, and the new algorithm was simulated with the original crow search algorithm, the improved crow search algorithms, and other excellent intelligent optimization algorithms. All the algorithms were compared and analyzed in terms of convergence accuracy, convergence speed, stability, Wilcoxon signed rank and Friedman tests. Experimental results show that the performance of the new algorithm is better than that of other comparison algorithms, and the balance between global exploration and local exploitation, convergence accuracy and convergence speed are achieved by the new algorithm.
|
Received: 19 January 2022
Published: 03 January 2023
|
|
Fund: 广东省基础与应用基础研究基金资助项目(2020A1515010727,2021A1515012252,2022A1515012022);广东省普通高校特色创新类资助项目(2019KTSCX108);广东省重点领域研发计划资助项目(2021B0707010003);茂名市科技计划资助项目(mmkj2020008) |
基于种群多样性的自适应乌鸦搜索算法
针对原始乌鸦搜索算法对种群多样性控制不强、个体位置更新方式单一、局部搜索精细度不高等缺点,提出新的自适应乌鸦搜索算法.设计多种搜索引导个体,基于进化不同阶段的种群多样性,实现搜索引导个体的自适应选择策略,使算法在迭代前期加强全局勘探,在迭代后期强化局部开发. 结合正余弦搜索理念,构建基于线性递减、混合正余弦震荡递减的多种飞行长度控制参数及相应的多种搜索方式,提升算法的搜索遍历性,增加算法在迭代后期找到更优解的概率. 为了验证新算法的有效性,通过标准测试函数,将新算法与原始乌鸦搜索算法、改进乌鸦搜索算法和其他优秀的智能优化算法进行仿真实验,比较分析各算法的收敛精度、收敛速度、稳定性、Wilcoxon符号秩检验和Friedman检验. 实验结果表明,新算法的性能优于其他比较算法的性能,新算法实现了全局勘探和局部开发、收敛精度和收敛速度的平衡.
关键词:
群智能优化,
乌鸦搜索算法,
种群多样性,
搜索引导个体,
自适应选择,
正余弦搜索
|
|
[1] |
ASKARZADEH A A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers and Structures, 2016, 169: 1- 12
doi: 10.1016/j.compstruc.2016.03.001
|
|
|
[2] |
JAIN M, RANI A, SINGH V An improved crow search algorithm for high-dimensional problems[J]. Journal of Intelligent and Fuzzy Systems, 2017, 33 (6): 3597- 3614
doi: 10.3233/JIFS-17275
|
|
|
[3] |
ZAMANI H, NADIMI-SHAHRAKI M H, GANDOMI A H CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems[J]. Applied Soft Computing, 2019, 85: 105583
doi: 10.1016/j.asoc.2019.105583
|
|
|
[4] |
SAYED G I, HASSANIEN A E, AZAR A T Feature selection via a novel chaotic crow search algorithm[J]. Neural Computing and Applications, 2019, 31: 171- 188
doi: 10.1007/s00521-017-2988-6
|
|
|
[5] |
OUADFEL S, ABD ELAZIZ M Enhanced crow search algorithm for feature selection[J]. Expert Systems with Applications, 2020, 159: 113572
doi: 10.1016/j.eswa.2020.113572
|
|
|
[6] |
UPADHYAY P, CHHABRA J K Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2020, 97: 105522
doi: 10.1016/j.asoc.2019.105522
|
|
|
[7] |
FRED A L, KUMAR S, PADMANABAN P, et al. Fuzzy-crow search optimization for medical image segmentation [M]// OLIVA D, HINOJOSA S. Applications of hybrid metaheuristic algorithms for image processing. [S. l.]: Springer, 2020: 413-439.
|
|
|
[8] |
SAHA A, BHATTACHARYA A, DAS P, et al. Crow search algorithm for solving optimal power flow problem [C]// 2017 Second International Conference on Electrical, Computer and Communication Technologies. Coimbatore: IEEE, 2017: 1-8.
|
|
|
[9] |
FATHY A, ABDELAZIZ A Single-objective optimal power flow for electric power systems based on crow search algorithm[J]. Archives of Electrical Engineering, 2018, 67: 123- 138
|
|
|
[10] |
MOHAMMADI F, ABDI H A modified crow search algorithm (MCSA) for solving economic load dispatch problem[J]. Applied Soft Computing, 2018, 71: 51- 65
doi: 10.1016/j.asoc.2018.06.040
|
|
|
[11] |
SPEA S R Solving practical economic load dispatch problem using crow search algorithm[J]. International Journal of Electrical and Computer Engineering, 2020, 10 (4): 3431- 3440
|
|
|
[12] |
KUMAR C A, VIMALA R C-FDLA: crow search with integrated fractional dragonfly algorithm for load balancing in cloud computing environments[J]. Journal of Circuits, Systems and Computers, 2019, 28 (7): 1950115
doi: 10.1142/S0218126619501159
|
|
|
[13] |
KUMAR K R P, KOUSALYA K Amelioration of task scheduling in cloud computing using crow search algorithm[J]. Neural Computing and Applications, 2020, 32: 5901- 5907
doi: 10.1007/s00521-019-04067-2
|
|
|
[14] |
TURGUT M S, TURGUT O E, ELIIYI D T Island-based crow search algorithm for solving optimal control problems[J]. Applied Soft Computing, 2020, 90: 106170
doi: 10.1016/j.asoc.2020.106170
|
|
|
[15] |
ABDALLH G Y, ALGAMAL Z Y A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm[J]. Electronic Journal of Applied Statistical Analysis, 2020, 13 (1): 86- 95
|
|
|
[16] |
赵世杰, 高雷阜, 于冬梅, 等 基于变因子加权学习与邻代维度交叉策略的改进CSA算法[J]. 电子学报, 2019, 47 (1): 40- 48 ZHAO Shi-jie, GAO Lei-fu, YU Dong-mei, et al Improved crow search algorithm based on variable-factor weighted learning and adjacent-generations dimension crossover strategy[J]. Acta Electronica Sinica, 2019, 47 (1): 40- 48
doi: 10.3969/j.issn.0372-2112.2019.01.006
|
|
|
[17] |
NECIRA A, NAIMI D, SALHI A, et al Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization[J]. Evolutionary Intelligence, 2021, 15: 2153- 2169
|
|
|
[18] |
MOGHADDAM S, BIGDELI M, MORADLOU M, et al Designing of stand-alone hybrid PV/wind/battery system using improved crow search algorithm considering reliability index[J]. International Journal of Energy and Environmental Engineering, 2019, 10: 429- 449
doi: 10.1007/s40095-019-00319-y
|
|
|
[19] |
ARORA S, SINGH H, SHARMA M, et al A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection[J]. IEEE Access, 2019, 7: 26343- 26361
doi: 10.1109/ACCESS.2019.2897325
|
|
|
[20] |
JAVAID N, MOHSIN S M, IQBAL A, et al. A hybrid bat-crow search algorithm based home energy management in smart grid [C]// Conference on Complex, Intelligent, and Software Intensive Systems. [S. l.]: Springer, 2018: 75-88.
|
|
|
[21] |
MAHESH N, VIJAYACHITRA S DECSA: hybrid dolphin echolocation and crow search optimization for cluster-based energy-aware routing in WSN[J]. Neural Computing and Applications, 2019, 31: 47- 62
doi: 10.1007/s00521-018-3637-4
|
|
|
[22] |
FARH H M H, AL-SHAALAN A M, ELTAMALY A M, et al A novel crow search algorithm auto-drive PSO for optimal allocation and sizing of renewable distributed generation[J]. IEEE Access, 2020, 8: 27807- 27820
doi: 10.1109/ACCESS.2020.2968462
|
|
|
[23] |
MIRJALILI S SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120- 133
doi: 10.1016/j.knosys.2015.12.022
|
|
|
[24] |
YAO X, LIU Y, LIN G Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (2): 82- 102
doi: 10.1109/4235.771163
|
|
|
[25] |
KHALILPOURAZARI S, PASANDIDEH S H R Sine–cosine crow search algorithm: theory and applications[J]. Neural Computing and Applications, 2020, 32: 7725- 7742
doi: 10.1007/s00521-019-04530-0
|
|
|
[26] |
GHOLAMI J, MARDUKHI F, ZAWBAA H M An improved crow search algorithm for solving numerical optimization functions[J]. Soft Computing, 2021, 25: 9441- 9454
doi: 10.1007/s00500-021-05827-w
|
|
|
[27] |
NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S, et al MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems[J]. Applied Soft Computing, 2020, 97: 106761
doi: 10.1016/j.asoc.2020.106761
|
|
|
[28] |
CHEN X, LI K, XU B, et al Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem[J]. Knowledge-Based Systems, 2020, 208: 106463
doi: 10.1016/j.knosys.2020.106463
|
|
|
[29] |
HEIDARI A A, MIRJALILI S, FARIS H, et al Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849- 872
doi: 10.1016/j.future.2019.02.028
|
|
|
[30] |
FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190
doi: 10.1016/j.knosys.2019.105190
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|