Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1882-1890    DOI: 10.3785/j.issn.1008-973X.2022.09.022
    
Redundancy resolution of hydraulic manipulators based on minimum-flow
Ru-qi DING1,2(),Wang-du LI1,2,Gang LI1,2,*(),Guo-liang HU1,2
1. Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China
2. Nanchang Key Laboratory of Vehicle Intelligent Equipment and Control, East China Jiaotong University, Nanchang 330013, China
Download: HTML     PDF(2370KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A redundant resolution method of hydraulic manipulator with minimum-flow was proposed, aiming at the energy optimization problem of the redundant hydraulic manipulator with a preset trajectory. Firstly, the kinematic equations of the hydraulic manipulator were built by the Denavit-Hartenberg method, which maps the end-effector velocity to the hydraulic cylinder velocity, and establishes the energy consumption model of the system. Secondly, the energy suboptimal redundancy resolution was solved based on the minimum cylinder speed norm method to partially reduce the energy consumption. On this basis, taking the minimum flow of the hydraulic system as the objective, the redundant resolution of energy optimization was further solved by optimizing the weighted Jacobian matrix. Thirdly, to improve the computational efficiency, a dynamic optimization method of weighted Jacobian matrix weights was proposed, and the energy-optimal motion planning of the redundant hydraulic manipulators was captured online. Finally, the experimental verification was carried out on the developed hydraulic manipulator test platform. Experimental results of three joint planar motions showed that compared with the existing gradient projection method and the minimum cylinder speed norm method, the energy consumption of the same end-effector trajectory motion was reduced by more than 5%.



Key wordshydraulic manipulator      motion planning      redundancy resolution      dynamic-weight      energy saving     
Received: 01 November 2021      Published: 28 September 2022
CLC:  TH 137.9  
Fund:  国家自然科学基金资助项目(52175050, U21A20124);江西省自然科学基金资助项目(20212ACB214004);中国博士后科学基金资助项目(2020M671349)
Corresponding Authors: Gang LI     E-mail: dingruqi@ecjtu.edu.cn;ligang0794@163.com
Cite this article:

Ru-qi DING,Wang-du LI,Gang LI,Guo-liang HU. Redundancy resolution of hydraulic manipulators based on minimum-flow. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1882-1890.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.022     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1882


基于最小流量的液压机械臂冗余分解

针对冗余液压机械臂预设轨迹下的能量优化问题,提出基于最小流量的液压机械臂冗余分解方法. 采用D-H参数法推导液压机械臂的运动学方程,构建末端速度与液压缸缸速的映射,建立系统能耗模型. 基于最小缸速范数法求解能量次优的冗余分解以部分降低能耗. 以液压系统流量最小为目标,通过优化加权雅可比矩阵求解能量最优的冗余分解. 为了提高计算效率,提出加权雅可比矩阵权值的动态优化方法,实现在线最优运动规划. 在研制的液压机械臂试验平台对冗余分解方法进行试验验证. 三关节平面运动试验结果表明,相比于现有梯度投影法和最小缸速范数法,所提最小流量优化方法相同末端轨迹的运动能耗降低超过5%.


关键词: 液压机械臂,  运动规划,  冗余分解,  动态权值,  节能 
Fig.1 Joint limit function graph of redundancy resolution
Fig.2 Solution flow chart of minimum-flow optimization
Fig.3 Schematic diagram of mechanism of redundant hydraulic robotic arm study
Fig.4 Geometric relationship of each joint on hydraulic manipulator
i L/m d/mm $ {\beta _{i1}}{\text{/(o)}} $ $ {\beta _{i2}}{\text{/(o)}} $
1 0.875 63 7.16 5.10
2 0.360 63 18.30 161.14
3 0.740 45 9.69 90
Tab.1 Structure parameters of hydraulic manipulator in case study
Fig.5 Experimental end-effector triangular trajectory
Fig.6 Comparisons of planned joint angles among different redundancy resolution methods under triangle trajectory
Fig.7 Experimental end-effector ellipse trajectory
Fig.8 Comparisons of planned joint angles among different redundancy resolution methods under elliptic trajectory
Fig.9 Developed test rig of redundant hydraulic manipulator and its control system
Fig.10 Comparisons of tested joint angles among different redundancy resolution methods under different trajectories
Fig.11 Comparisons of end-effector trajectories among different redundancy resolution methods under different trajectories
Fig.12 Comparisons of system flows among different redundancy resolution methods under different trajectories
算法 Ec,t Ec,e
理论 试验 理论 试验
MF 10.17 11.39 15.76 16.84
MAVN 11.17 12.00 16.65 17.74
GP 11.21 12.04 16.68 17.78
平均节能 7.2% 5.1% 7.4% 5.3%
Tab.2 Comparison of energy consumption in different trajectory theory calculations and experimental verification
[1]   CHENG M, XU B, ZHANG J H, et al Valve-based compensation for controllability improvement of the energy-saving electrohydraulic flow matching system[J]. Journal of Zhejiang University-Science A, 2017, 18 (6): 430- 442
doi: 10.1631/jzus.A1600346
[2]   王翔宇, 张红娟, 杨敬, 等 非对称泵控装载机动臂特性研究[J]. 机械工程学报, 2021, 57 (12): 258- 266
WANG Xiang-yu, ZHANG Hong-juan, YANG Jing, et al Research on the characteristics of wheel loader boom driven by the asymmetric pump controlled system[J]. Journal of Mechanical Engineering, 2021, 57 (12): 258- 266
doi: 10.3901/JME.2021.12.258
[3]   CHENG M, LI L A, DING R Q, et al Real-time anti-saturation flow optimization algorithm of the redundant hydraulic manipulator[J]. Actuators, 2021, 10: 11
doi: 10.3390/act10010011
[4]   WAN J, YAO J F, ZHANG L A, et al A weighted gradient projection method for inverse kinematics of redundant manipulators considering multiple performance criteria[J]. Strojniški vestnik - Journal of Mechanical Engineering, 2018, 64 (7/8): 475- 487
[5]   胡奎, 张继文, 董云飞, 等 针对关节限位优化的7自由度机械臂逆运动学解法[J]. 清华大学学报:自然科学版, 2020, 60 (12): 1007- 1015
HU Kui, ZHANG Ji-wen, DONG Yun-fei, et al Inverse kinematic optimization for 7-DoF serial manipulators with joint limits optimization[J]. Journal of Tsinghua University: Science and Technology, 2020, 60 (12): 1007- 1015
[6]   潜龙昊, 胡士强, 杨永胜 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报:工学版, 2017, 51 (1): 75- 81
QIAN Long-hao, HU Shi-qiang, YANG Yong-sheng Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 75- 81
[7]   ZHOU H B, ZHOU S, YU J, et al Trajectory optimization of pickup manipulator in obstacle environment based on improved artificial potential field method[J]. Applied Sciences, 2020, 10 (3): 935- 958
doi: 10.3390/app10030935
[8]   PENG X J, CHEN G Z, TANG Y J, et al Trajectory optimization of an electro-hydraulic robot[J]. Journal of Mechanical Science and Technology, 2020, 34 (10): 4281- 4294
doi: 10.1007/s12206-020-0919-4
[9]   徐帷, 卢山 基于Sarsa(λ)强化学习的空间机械臂路径规划研究 [J]. 宇航学报, 2019, 40 (4): 435- 443
XIU Wei, LU Shan Analysis of space manipulator route planning based on Sarsa(λ) reinforcement learning [J]. Journal of Astronautics, 2019, 40 (4): 435- 443
doi: 10.3873/j.issn.1000-1328.2019.04.008
[10]   YOKOSE Y Energy-saving trajectory planning for robots using the genetic algorithm with assistant chromosomes[J]. Artificial Life and Robotics, 2019, 25 (1): 89- 93
[11]   YIN S B, WEI J, WANG L H A machine learning based energy efficient trajectory planning approach for industrial robots[J]. Procedia CIRP, 2019, 81: 429- 434
doi: 10.1016/j.procir.2019.03.074
[12]   FERRENTINO E, CHIACCHIO P On the optimal resolution of inverse kinematics for redundant manipulators using a topological analysis[J]. Journal of Mechanisms and Robotics, 2020, 12 (3): 1- 14
[13]   GONG M D, LI X D, ZHANG L Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator[J]. IEEE Access, 2019, 7: 18662- 18674
doi: 10.1109/ACCESS.2019.2895741
[14]   HOANG P T, CHOI Y S, RHEE I, et al A new torque minimization method for heavy-duty redundant manipulators used in nuclear decommissioning tasks[J]. Intelligent Service Robotics, 2021, 14: 459- 469
doi: 10.1007/s11370-021-00369-4
[15]   TRINGALI A, COCUZZA S Globally optimal inverse kinematics method for a redundant robot manipulator with linear and nonlinear constraints[J]. Robotics, 2020, 9 (3): 61- 85
doi: 10.3390/robotics9030061
[16]   BEINER L, MATTILA J An improved pseudoinverse solution for redundant hydraulic manipulators[J]. Robotica, 1999, 17: 173- 179
[17]   NURMI J, MATTILA J Global energy-optimised redundancy resolution in hydraulic manipulators using dynamic programming[J]. Automation in Construction, 2017, 73: 120- 134
doi: 10.1016/j.autcon.2016.09.006
[18]   ZHENG S, DING R Q, ZHANG J H, et al Global energy efficiency improvement of redundant hydraulic manipulator with dynamic programming[J]. Energy Conversion and Management, 2021, 230: 113762
doi: 10.1016/j.enconman.2020.113762
[19]   CHAN T F, DUBEY R V A weighted least-norm solution based scheme for avoiding joint limits for redundant manipulators[J]. IEEE Transactions on Robotics and Automation, 1995, 11 (2): 286- 292
doi: 10.1109/70.370511
[20]   陆震. 冗余自由度机器人原理及应用[M]. 北京: 机械工业出版社, 2007.
[21]   刘志忠, 柳洪义, 罗忠, 等 基于可变加权矩阵的机器人雅可比矩阵规范化[J]. 机械工程学报, 2014, 50 (23): 29- 35
LIU Zhi-zhong, LIU Hong-yi, LUO Zhong, et al Jacobian matrix normalization based on variable weighting matrix[J]. Journal of Mechanical Engineering, 2014, 50 (23): 29- 35
doi: 10.3901/JME.2014.23.029
[22]   段晋军, 甘亚辉, 戴先中, 等 基于可操作度评价的冗余机器人逆解求解方法[J]. 华中科技大学学报:自然科学版, 2015, 43 (Suppl.1): 45- 48
DUAN Jin-jun, GAN Ya-hui, DAI Xian-zhong, et al Method of inverse kinematics solution for a redundant manipulator based on manipulability[J]. Journal of Huazhong University of science and Technology: Natural Science Edition, 2015, 43 (Suppl.1): 45- 48
[1] Yan-lin WANG,Ke-yi WANG,Kui-cheng WANG,Zong-jun MO,Lu-ying WANG. Safety evaluation of bionic-muscle cable-driven lower limb rehabilitation robot system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 168-177.
[2] XU Bing, CHENG Min, YANG Hua yong, ZHANG Jun hui. Electrohydraulic flow matching system with bypass pressure compensation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1762-1767.
[3] OUYANG Jin-long, WANG Chun-yuan, MAO Wei, DENG Xiao-yan. Applying EnIR and EvIR to optimize energy efficient retrofit plans for existing residential buildings in China[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1391-1398.
[4] TANG Li-ming, ZHOU Su-ming, CHEN Guang-ming, CHEN Qi. A two-combined-compressor refrigerator/freezer with cooling transformer[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1983-1986.
[5] XU Bing, ZENG Ding-rong, GE Yao-zheng, LIU Ying-jie. Research on characteristic of mode switch of separate meter in
and meter out load sensing control system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 858-863.
[6] HUANG Meng-Xing, XIE Yun-Yue, FAN Cheng-Zhi. Operating characteristic analysis and application study of
compound permanent magnet synchronous machines
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 1019-1024.
[7] LIN Xiao, GUAN Cheng, BO Shuang-Jia, et al. Dynamic characteristic of power source in parallel hybrid hydraulic
excavator
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 353-357.
[8] WANG Ji-Wu, GE Dan-Dong. Urban design method under energy saving target[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1538-1542.