Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1845-1855    DOI: 10.3785/j.issn.1008-973X.2022.09.018
    
Design and control of compound driven two-finger flexible manipulator
Quan-hui WU1,2(),Xu-hui SHAO1,2,Bai-song PAN1,2,*(),Luo-jie SHI1,2
1. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Download: HTML     PDF(3797KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to meet the grasping requirements of complex target parts with complex shapes, diverse physical properties, and different sizes in the industrial field, the imitating human finger joints and two finger fit grasping principles were used, and a two finger flexible manipulator was designed to realize the grasping target parts and achieve the state of envelope fitting. Firstly, the structural characteristics of the target part contour were analyzed. Secondly, the grasping contour characteristics were extracted to obtain the structural motion principle of the flexible manipulator. According to the motion principle of the flexible manipulator, the mathematical modeling and simulation analysis of the envelope clamping process were carried out. Finally, the platform was built to verify the flexible manipulator performance. The manipulator is composed of flexible mechanical fingers, driving parts and position compensation mechanism, which can realize the adaptive grasping of cylinder, cone and cuboid parts, and has high grasping reliability and stability.



Key wordscompound drive      flexible manipulator      mechanical design      servo control      grab experiment     
Received: 11 September 2021      Published: 28 September 2022
CLC:  TP 241.2  
Fund:  国家自然科学基金资助项目(51475425);浙江省自然科学基金资助项目(LQ20E050021);浙江省科技计划资助项目(2021C01097)
Corresponding Authors: Bai-song PAN     E-mail: wuqh@zjut.edu.cn;panbsz@zjut.edu.cn
Cite this article:

Quan-hui WU,Xu-hui SHAO,Bai-song PAN,Luo-jie SHI. Design and control of compound driven two-finger flexible manipulator. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1845-1855.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.018     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1845


复合驱动双指柔性机械手的设计与控制

为了满足工业领域中形状多变、物性多样、尺寸不一的复杂目标件抓取需求,模仿人手指关节并依据双指贴合抓取原理,设计达到包络贴合状态的双指柔性机械手. 分析目标件外形轮廓的结构特点,提取目标件轮廓的抓取特征,获得柔性机械手的结构运动原理.根据柔性机械手运动原理,进行目标件包络夹取过程的数学建模与仿真分析, 搭建平台验证柔性机械手的性能.该机械手由柔性机械手指、驱动部件和位置补偿机构组成,可以实现圆柱体、圆锥件、长方体类零件的适应性抓取,具有较高的抓取可靠性与稳定性.


关键词: 复合驱动,  柔性机械手,  机械设计,  伺服控制,  抓取实验 
Fig.1 Schematic diagram of flexible manipulator
Fig.2 Geometry model of flexible manipulator finger
Fig.3 Schematic diagram of flexible manipulator for slightly offset clamping of cylindrical parts
${\alpha _0}/(^\circ )$ $R/{\rm{mm}}$ ${Y_{PP'} }/{\rm{mm}}$ $P_y'/{\rm{mm}}$ ${\alpha _1}/(^\circ )$ $\alpha _1'/(^\circ )$ $\alpha _3'/(^\circ )$
55 50 0.466 97.291 51.61 45.14 59.03
60 50 0.363 101.272 40.92 35.00 47.52
65 50 0.295 104.277 30.73 25.26 36.74
65 55 0.414 103.221 37.05 30.93 44.05
65 60 0.947 100.389 45.58 38.23 55.73
Tab.1 Fine-tuning deviation motion state parameters
Fig.4 Overall structure of two-finger flexible manipulator
Fig.5 Structure diagram of finger part of two-finger flexible manipulator
Fig.6 Structure diagram of finger drive part of manipulator
参数 数值 参数 数值
指根节两连孔距L0 55 指尖节销孔接距L3 50
指根节推杆孔距L1 45 指尖节孔到指尖L4 70
指根节孔到边距K 50 指尖节销孔定位Q 26
中指节两连接孔L2 55 指根座连接点距L5 68
Tab.2 Manipulator physical size parameters mm
Fig.7 Model diagram of manipulator clamping cuboid part
Fig.8 Change diagram of torsion angle value of finger root segment when clamping cuboid part
Fig.9 Simulation when robot grips cylindrical part
Fig.10 Change value of torsion angle and distance from cylinder central axis to fixed plate of manipulator when griping cylindrical target part (Φ=100 mm)
Fig.11 Change graph of clamping force for clamping cylindrical part (Φ=100 mm)
Fig.12 Control system flow of robot and manipulator
Fig.13 PC control interface diagram
Fig.14 Wiring diagram of lower computer system
Fig.15 Working logic diagram of flexible manipulator
Fig.16 Diagram of 3D model of robot simulation system
参数类型 L0 L1 L2 L3 L4 L5 K Q
mm
设计 55.00 45.00 55.00 50.00 70.00 68.00 50.00 26.00
实际 55.18 44.86 55.24 50.06 69.82 67.94 49.86 26.04
Tab.3 Comparison of design manipulator size and actual size
参数类型 k1, k2/(N·mm) d1, d2/(mm) a1, a2/(°)
设计 8.67, 3.50 1.60, 1.20 0, 0
实际 8.52, 3.56 1.58, 1.22 2.1, ?3.2
Tab.4 Comparison of design value and actual value for manipulator torsion spring parameters
Fig.17 Two finger flexible manipulator and its control platform
Fig.18 Relationship between torsion angle of finger root and moving distance of finger root push plate
Fig.19 Relationship between clamping force and air pressure when clamping cylindrical part (Φ=100 mm)
Fig.20 State diagram of manipulator gripping cuboid, cylindrical and oblique parts
[1]   周济 智能制造: “中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26 (17): 2273- 2284
ZHOU Ji Intelligent manufacturing: main direction of “Made in China 2025”[J]. China Mechanical Engineering, 2015, 26 (17): 2273- 2284
doi: 10.3969/j.issn.1004-132X.2015.17.001
[2]   郑泽钿, 陈银清, 林文强, 等 工业机器人上下料技术及数控车床加工技术组合应用研究[J]. 组合机床与自动化加工技术, 2013, (7): 105- 109
ZHENG Ze-dian, CHEN Yin-qing, LIN Wen-qiang, et al Study on groupware applications about industrial robot to load-unload workpiece and the processing technology of NC lathe[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2013, (7): 105- 109
doi: 10.3969/j.issn.1001-2265.2013.07.032
[3]   JAYASWAL K, PALWALIA D K, KUMAR S Analysis of robust control method for the flexible manipulator in reliable operation of medical robots during COVID-19 pandemic[J]. Microsystem Technologies, 2020, 27: 2103- 2116
[4]   BIAN Y, GAO Z, LV X, et al Theoretical and experimental study on vibration control of flexible manipulator based on internal resonance[J]. Journal of Vibration and Control, 2018, 24 (15): 3321- 3337
doi: 10.1177/1077546317704792
[5]   WANG Y, ZHANG R, JU F, et al A light cable-driven manipulator developed for aerial robots: structure design and control research[J]. International Journal of Advanced Robotic Systems, 2020, 17 (3): 1- 14
[6]   席浩洋, 王挺, 姚辰, 等 基于电机驱动的仿生柔性机械手研究[J]. 高技术通讯, 2019, 29 (4): 362- 370
XI Hao-yang, WANG Ting, YAO Chen, et al Research on bionic soft gripper drived by motor[J]. Chinese High Technology Letters, 2019, 29 (4): 362- 370
doi: 10.3772/j.issn.1002-0470.2019.04.007
[7]   PHUTANE U, ROLLER M, BJÖRKENSTAM S, et al. Optimal control simulations of two-finger precision grasps [M]// KECSKEMÉTHY A, GEU FLORES F. Multibody Dynamics 2019. [S. l.]: Springer, 2020: 60-67.
[8]   LIONEL B. Enhancing versatility and safety of industrial grippers with adaptive robotic fingers [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 2911-2916.
[9]   ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al Soft robotics for chemists[J]. Angewandte Chemie, 2011, 50 (8): 1890- 1895
doi: 10.1002/anie.201006464
[10]   LITTLEFIELD Z, ZHU S, KOURTEV H, et al. Evaluating end-effector modalities for warehouse picking: a vacuum gripper vs a 3-finger underactuated hand [C]// 2016 IEEE International Conference on Automation Science and Engineering. Fort Worth: IEEE, 2016: 1190-1195.
[11]   ANVER H M C M, MUTLU R, ALICI G. 3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication [C]// 2017 IEEE International Conference on Advanced Intelligent Mechatronics. Munich: IEEE, 2017: 442-447.
[12]   董增雅, 高谦, 高国华, 等 柔性吞咽机械手的结构设计与样机试验[J]. 机电工程, 2018, 35 (12): 1304- 1309
DONG Zeng-ya, GAO Qian, GAO Guo-hua, et al Structure design and prototype test of flexible swallowing manipulator[J]. Journal of Mechanical and Electrical Engineering, 2018, 35 (12): 1304- 1309
doi: 10.3969/j.issn.1001-4551.2018.12.009
[13]   金波, 林龙贤 果蔬采摘欠驱动机械手爪设计及其力控制[J]. 机械工程学报, 2014, 50 (19): 1- 8
JIN Bo, LIN Long-xian Design and force control of an underactuated robotic hand for fruit and vegetable picking[J]. Journal of Mechanical Engineering, 2014, 50 (19): 1- 8
doi: 10.3901/JME.2014.19.001
[14]   王作桓, 莫浩明, 梁国威, 等 一种柔性机械手设计与分析[J]. 机电工程技术, 2019, 48 (9): 135- 137
WANG Zuo-huan, MO Hao-ming, LIANG Guo-wei, et al Design and analysis of a flexible manipulator[J]. Mechanical and Electrical Engineering Technology, 2019, 48 (9): 135- 137
doi: 10.3969/j.issn.1009-9492.2019.09.043
[15]   耿德旭, 刘洪波, 赵云伟, 等 气动四指柔性机械手结构功能和抓取实验研究[J]. 机床与液压, 2019, 47 (9): 14- 17
GENG De-xu, LIU Hong-bo, ZHAO Yun-wei, et al Structure design and grasp experiment of pneumatic flexible four-finger hand[J]. Machine Tool and Hydraulics, 2019, 47 (9): 14- 17
doi: 10.3969/j.issn.1001-3881.2019.09.003
[16]   杨孟涛, 黎泽伦, 杨永刚 一种组合式气动柔性机械手设计[J]. 液压与气动, 2020, (5): 52- 55
YANG Meng-tao, LI Ze-lun, YANG Yong-gang Design of a combined pneumatic flexible manipulator[J]. Chinese Hydraulics and Pneumatics, 2020, (5): 52- 55
doi: 10.11832/j.issn.1000-4858.2020.05.009
[1] WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 628-634.
[2] ZHANG Bin, DENG Qian-kun, WANG Shuang, YANG Hua-yong. Mechanism analysis, simulation and experiment study of dynamic servo control system of periodic high pressure impact[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 275-281.
[3] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1512-1519.
[4] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1520-1525.
[5] FENG Pei-en, LI Zhi-ping, LI Li-xin,LIU Wei-ping. Concepts, efficiency and applications of mechanical mirror symmetry[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1215-1220.
[6] CHENG Hong-tai, ZHANG Xiao-hua. Virtual constraints based dynamical servo control for a class of
underactuated mechanical systems
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 818-824.
[7] CAO Jian, SHU Xiao-Cong, DAO Guo-Liang. Identification of characteristic parameters and structure parameters
in pneumatic servo control
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 569-573.
[8] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 259-264.