Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1568-1577    DOI: 10.3785/j.issn.1008-973X.2022.08.011
    
Evaluation of aircraft cockpit form based on hesitant fuzzy sets
Yan-hao CHEN(),Sui-huai YU,Jian-jie CHU*(),Wen-zhe CUN
Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072, China
Download: HTML     PDF(1338KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A comprehensive evaluation method of aircraft cockpit design form based on hesitant fuzzy set was proposed, in order to solve the problems of difficult description of cognitive preferences and hesitation in decision making of pilots in the process of aircraft cockpit form design. The attribute feature system of the cognitive demand of cockpit design form was established by analyzing the cognitive demand of cockpit design form. The evaluation indexes affecting the cognitive preference of cockpit design form were obtained by using the rough number evaluation model, the features lines of cockpit key component design form were extracted, the core features of cockpit key component design form were obtained, and further combined with the cognitive preference evaluation index of cockpit design form, the comprehensive decision evaluation value was obtained. The cognitive entropy theory was used to modify the evaluation index weights and construct the set hesitant fuzzy evaluation model, so as to obtain the cockpit design form priority ranking under compound cognitive preference. Results show that the proposed method has good reliability and can effectively solve the hesitation of evaluation information, which can better achieve the accurate evaluation of the cognitive preference of aircraft cockpit design form.



Key wordsaircraft cockpit form      cognitive demand      cognitive preference      hesitant fuzzy set      comprehensive evaluation     
Received: 12 June 2021      Published: 30 August 2022
CLC:  TB 47  
Fund:  国防科技基础加强计划技术领域基金资助项目(2020-JCJQ-JJ-439);高等学校学科创新引智计划资助项目(B13044)
Corresponding Authors: Jian-jie CHU     E-mail: chenyhmail@163.com;cjj@nwpu.edu.cn
Cite this article:

Yan-hao CHEN,Sui-huai YU,Jian-jie CHU,Wen-zhe CUN. Evaluation of aircraft cockpit form based on hesitant fuzzy sets. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1568-1577.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.011     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1568


基于犹豫模糊集的飞机驾驶舱形态评价

为了解决飞机驾驶舱形态设计过程中,飞行员存在的认知偏好描述困难及决策犹豫的问题,提出基于犹豫模糊集的飞机驾驶舱设计形态综合评价方法. 通过对驾驶舱设计形态的认知需求分析,建立了驾驶舱设计形态认知需求的属性特征体系;利用粗数评价模型得到影响驾驶舱设计形态认知偏好的评价指标,提取驾驶舱关键部件设计形态特征线,获取了驾驶舱关键部件设计形态的核心特征,进一步结合驾驶舱设计形态的认知偏好评价指标,获取综合决策评价值;采用认知熵理论修正评价指标权重,构建集结犹豫模糊评价模型,从而得到复合认知偏好下的驾驶舱设计形态优先级排序. 与5种同类评价算法进行比较及一致性检验,结果表明本研究所提方法具有良好的可靠性且能有效解决评价信息的犹豫性,能够较好地实现对飞机驾驶舱设计形态认知偏好的精确评估.


关键词: 飞机驾驶舱形态,  认知需求,  认知偏好,  犹豫模糊集,  综合评价 
Fig.1 Hierarchical structure of cognitive demand attributes
需求类型 属性特征 特征定义
本能需求 安全防护感 驾驶舱形态具备安全可靠和基础保障
操纵空间感 驾驶舱形态操纵空间在肢体可达域范围
轮廓间距感 驾驶舱形态设计元件接口间距合理
总体布局感 驾驶舱形态机载系统设施布置准确
感官需求 部件协调感 驾驶舱形态部件,定位协调舒适
符号统一感 驾驶舱形态符号整体清晰统一
标识易读感 驾驶舱形态元素能够准确辨识
区域比例感 驾驶舱形态部件尺寸比例恰当
整体对称感 驾驶舱形态整体对称美观
感性需求 简洁感 驾驶舱形态简洁规整
科技感 驾驶舱形态创新集成
精密感 驾驶舱形态精准周密
智能感 驾驶舱形态感知决策
现代感 驾驶舱形态前瞻开放
Tab.1 Attribute features of cognitive demand of cockpit design form
Fig.2 Selection of evaluation index of cockpit cognitive preferences
Fig.3 Hesitant fuzzy comprehensive evaluation model
Fig.4 Cockpit form evaluation scheme library
特征属性A 分值
D1 D2 D3 D15 D16
A1 3 7 9 7 5
A2 1 5 5 5 3
A3 1 3 5 3 3
A4 3 5 7 7 5
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
A13 7 7 9 5 7
A14 3 5 5 5 3
Tab.2 Evaluation results of attribute feature of cognitive demands of cockpit form design
本能需求 属性 D1 D2 D3 D15 D16 均值
A1 粗数 [3.0,5.5] [5.3,7.3] [5.5,9.0] [5.3,7.3] [4.1,6.3] [4.4,6.6]
边界 2.5 2.0 3.5 2.0 2.2 2.2
A2 粗数 [1.0,3.4] [3.1,5.3] [3.1,5.3] [3.1,5.3] [2.2,4.2] [2.3,4.5]
边界 2.4 2.2 2.2 2.2 2.0 2.2
A3 粗数 [1.0,3.0] [2.2,3.9] [2.7,5.5] [2.2,3.9] [2.2,3.9] [2.0,4.1]
边界 2.0 1.7 2.8 1.7 1.7 2.1
A4 粗数 [3.0,5.4] [4.2,6.2] [5.1,7.3] [5.1,7.3] [4.2,6.2] [4.3,6.5]
边界 2.4 2.0 2.2 2.2 2.0 2.2
Tab.3 Rough number of instinctive demand features based on cockpit design form
感官需求 属性 D1 D2 D3 D15 D16 均值
A5 粗数 [4.5,5.8] [5.3,7.0] [5.3,7.0] [5.3,7.0] [4.5,5.8] [4.5,6.1]
边界 1.3 1.7 1.7 1.7 1.3 1.6
A6 粗数 [2.3,4.0] [3.0,5.4] [3.3,7.0] [2.3,4.0] [2.3,4.0] [2.2,4.4]
边界 1.7 2.4 3.7 1.7 1.7 2.2
A7 粗数 [1.0,3.1] [2.5,3.6] [3.1,5.0] [2.5,3.6] [2.5,3.6] [2.4,3.9]
边界 2.1 1.1 1.9 1.1 1.1 1.5
A8 粗数 [4.6,6.0] [5.4,7.3] [5.4,7.3] [4.6,6.0] [4.6,6.0] [4.7,6.5]
边界 1.4 1.9 1.9 1.4 1.4 1.8
A9 粗数 [2.2,3.7] [2.2,3.7] [2.9,5.0] [2.2,3.7] [2.2,3.7] [2.0,3.8]
边界 1.5 1.5 2.1 1.5 1.5 1.8
Tab.4 Rough number of sensory demand features based on cockpit design form
感性需求 D1 D2 D3 D15 D16 均值
A10 粗数 [2.4,3.9] [3.4,5.0] [3.4,5.0] [3.4,5.0] [1,3.4.0] [2.5,4.2]
边界 1.5 1.6 1.6 1.6 2.4 1.7
A11 粗数 [5.4,9.0] [4.5,5.9] [4.5,5.9] [4.9,8.0] [4.5,5.9] [4.4,6.5]
边界 3.6 1.4 1.4 3.1 1.4 2.1
A12 粗数 [2.3,4.4] [3.3,5.6] [3.8,7.0] [3.3,5.6] [2.3,4.4] [2.6,5.0]
边界 2.1 2.3 3.2 2.3 2.1 2.4
A13 粗数 [5.9,7.7] [5.9,7.7] [6.5,9.0] [5.0,6.5] [5.9,7.7] [5.6,7.4]
边界 1.8 1.8 2.5 1.5 1.8 1.8
A14 粗数 [2.8,3.9] [3.5,5.3] [3.5,5.3] [3.5,5.3] [2.8,3.9] [3.0,4.5]
边界 1.1 1.8 1.8 1.8 1.1 1.5
Tab.5 Rough number of perceptual demand features based on cockpit design form
Fig.5 Rough lower boundary and rough boundary results
Fig.6 Degree table of fuzzy evaluation term set
方案U A1 A4 A5 A8 A11 A12
u1 {0.38, 0.44, 0.53} {0.56, 0.63, 0.68} {0.38, 0.45, 0.52} {0.17, 0.20, 0.29} {0.33, 0.38, 0.47} {0.23, 0.28, 0.37}
u2 {0.47, 0.55, 0.60} {0.43, 0.49, 0.56} {0.25, 0.30, 0.38} {0.32, 0.37, 0.47} {0.18, 0.25, 0.35} {0.18, 0.23, 0.33}
u3 {0.17, 0.20, 0.28} {0.17, 0.21, 0.28} {0.22, 0.27, 0.36} {0.20, 0.25, 0.33} {0.16, 0.20, 0.28} {0.44, 0.48, 0.55}
u4 {0.18, 0.22, 0.31} {0.38, 0.48, 0.56} {0.36, 0.41, 0.49} {0.25, 0.30, 0.40} {0.34, 0.41, 0.49} {0.17, 0.22, 0.32}
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
u29 {0.53, 0.62, 0.66} {0.52, 0.59, 0.65} {0.60, 0.68, 0.74} {0.67, 0.76, 0.80} {0.63, 0.72, 0.76} {0.63, 0.71, 0.77}
u30 {0.66, 0.73, 0.77} {0.65, 0.74, 0.78} {0.64, 0.73, 0.78} {0.55, 0.65, 0.70} {0.53, 0.61, 0.67} {0.46, 0.53, 0.59}
Tab.6 Hesitant fuzzy decision matrix
方案 s+ s? si
u1 0.83 0.95 0.54
u2 0.80 0.97 0.55
u3 0.72 0.99 0.58
u4 0.80 0.98 0.55
$\vdots $ $\vdots $ $\vdots $ $\vdots $
u29 0.98 0.80 0.45
u30 0.97 0.82 0.46
Tab.7 Comprehensive similarity results of evaluation scheme
Fig.7 Distribution of pros and cons of evaluation plan
模型 Nc
u1 u2 u3 u4 $ \cdots $ u29 u30
灰色关联法 23 26 30 28 $ \cdots $ 4 5
TOPSIS 23 26 30 28 $ \cdots $ 4 5
熵权TOPSIS 21 26 30 27 $ \cdots $ 4 5
RSR 24 27 30 28 $ \cdots $ 4 5
VIKOR 27 25 30 28 $ \cdots $ 3 5
Tab.8 Sort results of different evaluation models
Fig.8 Scattered point distribution of various evaluation rankings
[1]   CHEN Y H, YU S H, CHU J J, et al Evaluating aircraft cockpit emotion through a neural network approach[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2021, 35 (1): 81- 89
doi: 10.1017/S0890060420000475
[2]   WEI Z M, ZHUANG D M, WANYAN X R, et al A model for discrimination and prediction of mental workload of aircraft cockpit display interface[J]. Chinese Journal of Aeronautics, 2014, 27 (5): 1070- 1077
doi: 10.1016/j.cja.2014.09.002
[3]   ZHANG X, SUN Y C, ZHANG Y J, et al Multi-agent modelling and situational awareness analysis of human-computer interaction in the aircraft cockpit: a case study[J]. Simulation Modelling Practice and Theory, 2021, 111: 1- 22
[4]   LAZARO M J, KANG Y, YUN M H, et al The effects of visual complexity and decluttering methods on visual search and target detection in cockpit displays[J]. International Journal of Human-Computer Interaction, 2021, 37 (7): 588- 600
doi: 10.1080/10447318.2021.1890491
[5]   CHEN H, PANG L P, WANYAN X R, et al Effects of air route alternation and display design on an operator's situation awareness, task performance and mental workload in simulated flight tasks[J]. Applied Sciences, 2021, 11 (12): 1- 14
[6]   CAUSSE M, PERAN P, DEHAIS F, et al Affective decision making under uncertainty during a plausible aviation task: an fMRI study[J]. NeuroImage, 2013, 71 (1): 19- 29
[7]   罗仕鉴, 翁建广, 陈实, 等 基于情境的产品族设计风格DNA[J]. 浙江大学学报:工学版, 2009, 43 (6): 1112- 1117
LUO Shi-jian, WENG Jian-guang, CHEN Shi, et al Scenario-based product family design styling DNA[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (6): 1112- 1117
[8]   刘岗, 刘春荣 商用飞机驾驶舱造型设计特征研究[J]. 民用飞机设计与研究, 2015, (1): 1- 5
LIU Gang, LIU Chun-rong Research on the cockpit design characteristics for commercial aircraft[J]. Civil Aircraft Design and Research, 2015, (1): 1- 5
doi: 10.3969/j.issn.1674-9804.2015.01.001
[9]   冯青, 余隋怀, 初建杰, 等 基于AHP灰色理论的飞机驾驶舱内环境设计评价[J]. 航空制造技术, 2012, (17): 72- 75
FENG Qing, YU Sui-huai, CHU Jian-jie, et al Evaluation of interior environmental design of aircraft cockpit based on analytic hierarchy process and grey theory[J]. Aeronautical Manufacturing Technology, 2012, (17): 72- 75
doi: 10.3969/j.issn.1671-833X.2012.17.014
[10]   王黎静, 曹琪琰, 莫兴智, 等 民机驾驶舱内饰设计感性评价研究[J]. 机械工程学报, 2014, 50 (22): 122- 126
WANG Li-jing, CAO Qi-yan, MO Xing-zhi, et al Study of users’ kansei on commercial aircraft cockpit interior design[J]. Journal of Mechanical Engineering, 2014, 50 (22): 122- 126
doi: 10.3901/JME.2014.22.122
[11]   CHEN Y H, YU S H, CHU J J, et al Fuzzy emotional evaluation of color matching for aircraft cockpit design[J]. Journal of Intelligent and Fuzzy Systems, 2021, 40 (3): 3899- 3917
doi: 10.3233/JIFS-191960
[12]   陈俊璇, 余隋怀, 刘国昌, 等 飞机座舱人机布局评价方法研究[J]. 计算机工程与应用, 2014, 50 (7): 230- 234
CHEN Jun-xuan, YU Sui-huai, LIU Guo-chang, et al Aircraft cockpit ergonomic layout evaluation method research[J]. Computer Engineering and Applications, 2014, 50 (7): 230- 234
[13]   李转, 苟秉宸, 杨延璞, 等 基于AHP-灰色聚类的飞机客舱内环境工业设计评价[J]. 航空计算技术, 2013, 43 (5): 52- 55+60
LI Zhuan, GOU Bing-chen, YANG Yan-pu, et al Industrial design evaluation of interior environment of aircraft passenger cabin based on AHP and grey clustering[J]. Aeronautical Computing Technique, 2013, 43 (5): 52- 55+60
doi: 10.3969/j.issn.1671-654X.2013.05.013
[14]   周爱民, 刘宏斌, 张书涛, 等 面向汽车主客观审美评价的不确定性推理模型[J]. 浙江大学学报:工学版, 2021, 55 (3): 419- 429
ZHOU Ai-min, LIU Hong-bin, ZHANG Shu-tao, et al Uncertainty reasoning model of subjective and objective aesthetic evaluation of car[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 419- 429
[15]   ALLEN J, MUNOZ J C, ORTUZAR J D Understanding public transport satisfaction: using Maslow's hierarchy of (transit) needs[J]. Transport Policy, 2019, 81: 75- 94
doi: 10.1016/j.tranpol.2019.06.005
[16]   ZHU G N, HU J, REN H L A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments[J]. Applied Soft Computing Journal, 2020, 91: 1- 18
[17]   张雪峰, 苏加福 面向产品创新要求的协同创新客户选择[J]. 科技进步与对策, 2017, 34 (13): 89- 97
ZHANG Xue-feng, SU Jia-fu Customer selection for product innovation considering its requirements[J]. Science and Technology Progress and Policy, 2017, 34 (13): 89- 97
doi: 10.6049/kjjbydc.2016090518
[18]   LIANG W, GOH M, WANG Y M Multi-attribute group decision making method based on prospect theory under hesitant probabilistic fuzzy environment[J]. Computers and Industrial Engineering, 2020, 149: 1- 9
[19]   孙艳, 刘肖健, 王万良 创新性与满意度融合的用户创新方法及其在产品外观优化中的应用[J]. 计算机辅助设计与图形学学报, 2012, 24 (7): 954- 960
SUN Yan, LIU Xiao-jian, WANG Wan-liang User innovation method considering creativity and satisfaction criteria and its application in product styling optimization[J]. Journal of Computer-Aided Design and Computer Graphics, 2012, 24 (7): 954- 960
doi: 10.3969/j.issn.1003-9775.2012.07.016
[20]   崔春生, 朱向琳, 任亚丹, 等 基于犹豫模糊多属性决策方法的农业现代化水平评价研究[J]. 管理评论, 2019, 31 (11): 195- 201
CUI Chun-sheng, ZHU Xiang-lin, REN Ya-dan, et al Study on the evaluation of agricultural modernization level based on the method of hesitant fuzzy multi-attribute decision making[J]. Management Review, 2019, 31 (11): 195- 201
[21]   ZHANG X X, YANG M G Color image knowledge model construction based on ontology[J]. Color Research and Application, 2019, 44 (4): 651- 662
doi: 10.1002/col.22374
[22]   JING J, LIU Q, CAI W Y, et al. Design knowledge framework based on parametric representation[C] //HIMI 2014: Human Interface and the Management of Information. Information and Knowledge Design and Evaluation. Switzerland: Springer International Publishing, 2014: 332-341.
[23]   刘岗. 商用飞机驾驶舱造型设计研究及其应用[D]. 上海: 上海交通大学, 2015: 37.
LIU Gang. A study of commercial aircraft's cockpit design and its application[D]. Shanghai: Shanghai Jiao Tong University, 2015: 37.
[24]   ZHAI L Y, KHOO L P, ZHONG Z W Design concept evaluation in product development using rough sets and grey relation analysis[J]. Expert Systems with Applications, 2009, 36 (3): 7072- 7079
doi: 10.1016/j.eswa.2008.08.068
[25]   赵文燕, 张换高, 何桢, 等 粗数: 一种用户需求分析方法[J]. 计算机集成制造系统, 2011, 17 (11): 2493- 2501
ZHAO Wen-yan, ZHANG Huan-gao, HE Zhen, et al Rough number: customer requirements analytical method[J]. Computer Integrated Manufacturing Systems, 2011, 17 (11): 2493- 2501
[26]   XU Z, XIA M Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making[J]. International Journal of Intelligent Systems, 2012, 27 (9): 799- 822
doi: 10.1002/int.21548
[27]   XU Z S, ZHANG X L Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information[J]. Knowledge-Based Systems, 2013, 52 (6): 53- 64
[28]   LEE E S, LI R J Comparison of fuzzy numbers based on the probability measure of fuzzy events[J]. Computers and Mathematics with Applications, 1988, 15 (10): 887- 896
doi: 10.1016/0898-1221(88)90124-1
[29]   张洋铭, 陈云翔, 王攀, 等 基于改进模糊Borda法的直觉模糊组合多属性群决策方法[J]. 控制与决策, 2017, 32 (12): 2219- 2226
ZHANG Yang-ming, CHEN Yun-xiang, WANG Pan, et al Intuitionistic fuzzy combination multi-attribute group decision-making method based on improved fuzzy Borda method[J]. Control and Decision, 2017, 32 (12): 2219- 2226
[1] Hao LIN,Lei-xiao LI,Hui WANG,Zhi-qiang MA,Jian-xiong WAN. Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1072-1082.
[2] HAO Nan-nan, ZHENG Bing, ZHANG Chao-yong. Application of gray fuzzy integral in multi-objective decisions[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 663-673.
[3] CHEN Shu-qin, PAN Yang-yang, TAN Hong-wei. Comprehensive evaluation on regional suitability of solar water heating system in college bathrooms[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1519-1526.
[4] WANG Lian sheng, XU Yue tong, JIANG Jun hai, XU Guan hua. Comprehensive evaluation system for on machine measurement system of parts quality[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1088-1094.
[5] SHANG Shu-li, GU Zheng-hua, ZHAO Shi-kai, LIU Guo-liang. Comprehensive evaluation of ecological effect of hydropower projects based on fuzzy logic[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1603-1609.
[6] SHANG Shu-li, GU Zheng-hua, ZHAO Shi-kai, LIU Guo-liang. Comprehensive evaluation of ecological effect of hydropower projects based on fuzzy logic[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 0-0.
[7] OU Li-Yong, DU Shu-Xin. Multi-agent based coordination of public detection resources[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 81-86+123.