Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 1044-1054    DOI: 10.3785/j.issn.1008-973X.2022.05.022
    
Activity-aware social vehicle clustering algorithm
Hai-bo ZHANG1,2(),Zi-qi LIU1,2,Kai-jian LIU1,2,Yong-jun XU1
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Engineering Research Center of Mobile Communications, Ministry of Education, Chongqing 400065, China
Download: HTML     PDF(2131KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An activity-aware social vehicle clustering algorithm was proposed, in order to solve the problem of instability or interruption of data transmission link between vehicles due to the high mobility of vehicles and the changeable topology in the Internet of Vehicles (IoV). In the cluster head (CH) selection process, the mobility similarity score composed of relative acceleration, speed and distance and social similarity score defined by interest similarity were considered, then were weighted and summed to obtain similarity score. The radix sorting algorithm was used to sort and select cluster head candidates (CHc) with highest scores, which ensured the stability. Activity degree consisting of the amount of historical processed data and the number of requests for resources was introduced. By measuring it, the CH with real social willingness and ability was selected from CHcs, and this increases the intimacy within clusters. Simulation results on the OMNet++ platform show that compared with traditional algorithms, the proposed algorithm maintains the stability of the cluster while increasing the intimacy.



Key wordsInternet of Vehicles (IoV)      activity degree      clustering algorithm      social similarity      intimacy     
Received: 29 September 2021      Published: 31 May 2022
CLC:  TN   
  92 (Hydrospheric and atmospheric geophysics)  
Fund:  国家自然科学基金资助项目(61801065);长江学者和创新团队发展计划基金资助项目(IRT16R72);重庆市留创计划创新类资助项目(cx2020059)
Cite this article:

Hai-bo ZHANG,Zi-qi LIU,Kai-jian LIU,Yong-jun XU. Activity-aware social vehicle clustering algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1044-1054.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.022     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/1044


活跃度感知的社交车辆分簇算法

为了解决车联网(IoV)中因车辆高速移动和拓扑结构多变导致的车辆间数据传输链路不稳定甚至中断的问题,提出一种活跃度感知的社交车辆分簇算法. 在簇头(CH)筛选过程中,考虑由相对加速度、速度和相对距离构成的移动相似性分值以及由兴趣相似度定义的社交相似性分值,加权求和得到车辆相似性分值. 利用基数排序算法排序并筛选出分值最高者作为簇头候选者(CHc),保证集群的稳定性. 引入由车辆历史数据处理量和车辆请求资源次数构成的活跃度的概念,通过对其进行判断,从簇头候选者中筛选出真正有社交意愿和能力的簇头,提升簇内亲密度. 使用OMNet++平台进行仿真,结果表明,与传统算法相比,采用所提算法,能使得集群在保持稳定性的同时,亲密度有所提升.


关键词: 车联网(IoV),  活跃度,  分簇算法,  社交相似性,  亲密度 
Fig.1 Blockchain assisted vehicular social network architecture
Fig.2 Formation of activity-aware social vehicle clusters
状态 状态说明
未定义 (undefined, UD) 所有车辆的初始状态,此状态下车辆不属于任何簇
簇头(cluster head, CH) 簇内的唯一领导者,通过一跳成员列表查询簇员状态信息
簇员(cluster meber, CM) 与簇头有相同兴趣的
一跳邻居车辆
簇头候选者(cluster head candidate, CHc) 仅在分簇过程中暂时存在,簇头选定后就会消失
Tab.1 Description of vehicle status
Fig.3 Transition of states of vehicles during clustering
Fig.4 Process of cluster head election
Fig.5 Simulation map of SUMO
参数名称 取值
仿真时间 ${T^{ {\text{sim} } } }$/s 500
MAC协议 802.11p
车辆数量 $ N $/辆 500
稳定通信范围 $D_{\rm{v}}^{ {\text{st} } }$/m 200~500
最大车速 ${V_{{\text{MAX}}}}$/(km?h?1) 60
道路长度 $ L $/km 5
车辆长度/m 5
加速度/(m?s?2) 2.6
减速度/(m?s?2) 4.5
BI/s 1
$q$ 0.2
路径损耗模型 2径模型
迭代次数 $ \xi $[21]/次 10
Tab.2 Simulation parameters in process of vehicle clustering
Fig.6 Influence of stable communication distance on number of cluster members
Fig.7 Influence of stable communication distance and number of cluster members on duration of vehicles within clusters
Fig.8 Influence of stable communication distance and number of cluster members on number of vehicles in clusters
Fig.9 Influence of maximum speed of vehicles on stability of clusters
Fig.10 Influence of maximum speed of vehicles on duration of clusters using different clustering algorithms
Fig.11 Influence of maximum speed of vehicles on number of vehicles in different states in cluster using different clustering algorithms
Fig.12 Influence of weighting factor on total similarity score of vehicles
场景 ${V_{{\rm{MAX}}} }$/(km?h?1) $D_{\rm{v}}^{ {\text{st} } }$/m $q$
堵车道路 18[23] 200 (0.1, 1.0]
城市道路 60 300 (0.2, 1.0]
高速道路 100 400 (0, 0.2]
Tab.3 Description of three typical road scenes
Fig.13 Influence of weighting factor on total similarity score of vehicles under different road scenarios
Fig.14 Four kinds of scores of vehicles V1 to V5
算法 IDCH $ S_i^{{\text{Act}}} $ $ S_i^{{\text{tot}}} \left( {q = 0.2} \right) $ $ {S_i} $ $ {I_i} $
本研究所提分簇算法 V4 0.65 0.8124 0.823 0.7700
经典最小编号分簇算法 V1 0.58 0.7795 0.793 0.7253
自适应分簇算法 V3 0.61 0.8080 0.840 0.6800
动态分簇算法 V3 0.61 0.8080 0.840 0.6800
Tab.4 Comparison of cluster head selection results
[1]   CHEN S, HU J, SHI Y, et al A vision of C-V2X: technologies, field testing and challenges with chinese development[J]. IEEE Internet of Things Journal, 2020, 7 (5): 3872- 3881
doi: 10.1109/JIOT.2020.2974823
[2]   NING Z L, DONG P, WANG X, et al When deep reinforcement learning meets 5G vehicular networks: a distributed offloading framework for traffic big data[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (2): 1352- 1361
[3]   张海霞, 李腆腆, 李东阳, 等 基于车辆行为分析的智能车联网关键技术研究[J]. 电子与信息学报, 2020, (1): 36- 49
ZHANG Hai-xia, LI Tian-tian, LI Dong-yang, et al Research on vehicle behavior analysis based technologies for intelligent vehicular networks[J]. Jounal of Electronics and Information Technology, 2020, (1): 36- 49
doi: 10.11999/JEIT190820
[4]   ALSABAH M K J, TRABELSI H, JERBI W. Survey on clustering in VANET networks[C]// The 18th International Multi-Conference on Systems, Signals and Devices (SSD). Monastir: IEEE, 2021: 493-502.
[5]   LIN C R, GERLA M Adaptive clustering for mobile wireless networks[J]. IEEE Journal on Selected Areas in Communications, 1997, 15 (7): 1265- 1275
doi: 10.1109/49.622910
[6]   REN M, KHOUKHI L, LABIOD H, et al A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs)[J]. Vehicular Communications, 2017, 9: 233- 241
doi: 10.1016/j.vehcom.2016.12.003
[7]   KANG J, MA H, DUAN Z, et al. Vehicle trajectory clustering in urban road network environment based on Doc2Vec model[C]// IEEE 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021: 1-8.
[8]   SENNAN S, RAMASUBBAREDDY S, BALAASUBRAMANIVAM S, et al MADCR: mobility aware dynamic clustering-based routing protocol in Internet of Vehicles[J]. China Communications, 2021, 18 (7): 69- 85
doi: 10.23919/JCC.2021.07.007
[9]   DAEINABI A, RAHBAR A G P, KHADEMZADEH A VWCA: an efficient clustering algorithm in vehicular ad hoc networks[J]. Journal of Network and Computer Applications, 2011, 34 (1): 207- 222
doi: 10.1016/j.jnca.2010.07.016
[10]   GARBISO J, DIACONESCU A, COUPECHOUX M, et al Fair self-adaptive clustering for hybrid cellular-vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (2): 1225- 1236
[11]   TSCHORSCH F, SCHEUERMANN B Bitcoin and beyond: a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys and Tutorials, 2016, 18 (3): 2084- 2123
doi: 10.1109/COMST.2016.2535718
[12]   LIN X, WU J, MUMTAZ S, et al Blockchain-based on-demand computing resource trading in IoV-assisted smart city[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 9 (3): 1373- 1385
[13]   JIANG T, FANG H, WANG H Blockchain-based Internet of Vehicles: distributed network architecture and performance analysis[J]. IEEE Internet of Things Journal, 2019, 6: 4640- 4649
doi: 10.1109/JIOT.2018.2874398
[14]   FAN K, PAN Q, ZHANG K, et al A secure and verifiable data sharing scheme based on blockchain in vehicular social networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (6): 5826- 5835
doi: 10.1109/TVT.2020.2968094
[15]   OUBABAS S, AOUDJIT R, RODRIGUES J J P C, et al Secure and stable vehicular ad hoc network clustering algorithm based on hybrid mobility similarities and trust management scheme[J]. Vehicular Communications, 2018, 13: 128- 138
doi: 10.1016/j.vehcom.2018.08.001
[16]   WANG M M, SUN S L, LI Y J A compressive tracking method based on Gaussian differential graph and weighted cosine similarity metric[J]. IEEE Signal Processing Letters, 2016, 25 (4): 501- 505
[17]   MURRE J M J, DROS J Replication and analysis of Ebbinghaus’ forgetting curve[J]. PloSOne, 2015, 10 (7): e0120644
doi: 10.1371/journal.pone.0120644
[18]   LI G, YANG Z, CHEN S, et al. A traffic flow-based and dynamic grouping-enabled resource allocation algorithm for LTE-D2D vehicular networks[C]// IEEE/CIC International Conference on Communications in China (ICCC). Chengdu: IEEE, 2016: 1-6.
[19]   LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using sumo[C]// The 21st International Conference on Intelligent Transportation Systems (ITSC). Maui: IEEE, 2018: 2575-2582.
[20]   SOMEER C, GERMAN R, DRESSLER F Bidirectionally coupled network and road traffic simulation for improved IVC analysis[J]. IEEE Transactions on Mobile Computing, 2010, 10 (1): 3- 15
[21]   BERSALI M, RACHEDI A, BOUARFA H. A new collaborative clustering approach for the Internet of Vehicles (CCA-IoV)[C]//The Second International Conference on Embedded and Distributed Systems (EDiS). Oran: IEEE, 2020: 58-63.
[22]   KAMOI R N, JUNIOR L A P, VERRI F A N, et al Platoon grouping network offloading mechanism for VANETs[J]. IEEE Access, 2021, 9: 53936- 53951
doi: 10.1109/ACCESS.2021.3071085
[23]   水宜水. 面向车联网安全环境的V2V信息传输与可变限速控制研究[D]. 武汉: 武汉理工大学, 2019: 8.
SHUI Yi-shui. Research on V2V Information transmission and variable speed limit control for vehicle network security environment[D]. Wuhan: Wuhan University of Technology, 2019: 8.
[1] Yun-hao WANG,Ming-hui SUN,Yi XIN,Bo-xuan ZHANG. Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 702-710.
[2] Xue-jiao LIU,Yi-dan YIN,Wei CHEN,Ying-jie XIA,Jia-li XU,Li-dong HAN. Secure data sharing scheme in Internet of Vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 957-965.
[3] LI Guo-Hou, HUANG Ping-jie, CHEN Pei-Hua,HOU Di-Ho, Zhang Guang-Xin, ZHOU Ze-Kui. Application of eddy current testing in the quantitative evaluation
of the rail cracks
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 2038-2042.
[4] SHANG Xiu-Qin, LEI Jian-Gang, SUN You-Xian. Genetic programming based twoterm prediction model of iron ore burning through point[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1266-1269.
[5] YANG Xiao-Hu, LI Jue-Feng. Optimizing SOA performance in multinetwork environment based on
hillclimbing clustering algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 738-742.