|
|
Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load |
Jian-dong JIANG(),Jiu-li ZHANG,Rui-zheng NIU,Song-tao WU,Xin QIAO |
Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China |
|
|
Abstract The L-shaped cantilever beam with coupled bending-shear load was proposed based on the Timoshenko beam theory, and energy capture performance of composite piezoelectric structures of L-shaped piezoelectric cantilever beams was analyzed to solve the problems of high natural frequency, narrow working frequency range and low energy conversion efficiency in traditional piezoelectric energy harvesting devices. The effects of the length, width and length of the L-shaped cantilever beam on the piezoelectric energy acquisition frequency, output voltage peak and energy conversion efficiency were analyzed according to the characteristics of the operating environment of the wireless sensor. L-shaped piezoelectric cantilever beams with different sizes were combined to analyze and design the array-type composite vibrator with a square layout. Simulation calculations and experimental verification results were compared. The energy acquisition frequency was 28-36 Hz, 61-68 Hz, 92-99 Hz and 103-111 Hz at the environmental low frequency of 0-250 Hz. The frequency was improved by 260% on average compared with the conventional array piezoelectric composite beam of the same size.
|
Received: 05 January 2020
Published: 27 January 2021
|
|
耦合弯曲-剪切载荷L型压电振子的低宽频特性
针对传统的压电能量采集装置固有频率高、工作频率范围窄及能量转换率低的问题,基于Timoshenko梁理论提出耦合弯曲-剪切载荷的L型压电振子,研究基于L型压电振子的复合压电结构的能量采集特性. 根据无线传感器的作业环境特点,研究L型悬臂梁的长度、宽度及延伸段长等因素对压电能量采集频率、输出电压峰值及能量转换效率的影响规律. 组合不同尺寸L型压电悬臂梁,研究设计回字形布局的阵列式复合振子. 经仿真分析与实验验证结果可知,在0~250 Hz低频环境下,能量采集频率为28~36 Hz、61~68 Hz、92~99 Hz以及103~111 Hz,较等尺寸传统阵列式压电复合振子覆盖频率平均提升了260%.
关键词:
Timoshenko梁,
L型悬臂梁,
低宽频,
复合振子
|
|
[1] |
马祖长, 孙怡宁, 梅涛 无线传感器网络综述[J]. 通信学报, 2004, 25 (4): 114- 124 MA Zu-zhang, SUN Yi-ning, MEI Tao Survey on wireless sensors network[J]. Journal of China Institute of Communications, 2004, 25 (4): 114- 124
doi: 10.3321/j.issn:1000-436X.2004.04.016
|
|
|
[2] |
杨斌强, 徐文谭, 陆国丽, 等 宽频压电振动能量采集器的分布参数模型与实验[J]. 中国机械工程, 2017, 28 (2): 127- 134 YANG Bin-qiang, XU Wen-tan, LU Guo-li, et al Distrubuted parameter model and experiments of a broadband piezoelelctric vibration energy harvester[J]. China Mechanical Engineering, 2017, 28 (2): 127- 134
doi: 10.3969/j.issn.1004-132X.2017.02.001
|
|
|
[3] |
展永政, 王光庆 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报: 工学版, 2014, 48 (7): 1248- 1253 ZHANG Yong-zheng, WANG Guang-qing Performance analysis and power optimization of piezoelectric vibration energy harvester[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1248- 1253
|
|
|
[4] |
TRAN N, GHAYESH M H, ARJOMANDI M Ambient vibration energy harvesters: a review on nonlinear techniques for performa-nce enhancement[J]. International Journal of Engineering Science, 2018, 127: 162- 185
doi: 10.1016/j.ijengsci.2018.02.003
|
|
|
[5] |
谢涛, 袁江波, 单小彪, 等 多悬臂梁压电振子频率分析及发电实验研究[J]. 西安交通大学学报, 2010, 44 (2): 98- 107 XIE Tao, YUAN Jiang-bo, SHAN Xiao-biao, et al Frequency analysis and electricity generated by multiple piezoelectric cantilevers in energy harvesting[J]. Journal of Xi′an Jiaotong University, 2010, 44 (2): 98- 107
|
|
|
[6] |
RAMALINGAM U, GANDHI U, MANGALANATHAN U, et al A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband[J]. International Journal of Mechanical Sciences, 2018, 142-143: 224- 234
doi: 10.1016/j.ijmecsci.2018.05.003
|
|
|
[7] |
OWENS B A M, MANN B P Linear and nonlinear electromagnetic coupling models invibration-based energy harvesting[J]. Journal of Sound and Vibration, 2012, 331 (4): 922- 937
doi: 10.1016/j.jsv.2011.10.026
|
|
|
[8] |
REZAEI M, KHADEM S E, FIROOZY P Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects[J]. International Journal of Engineering Science, 2017, 118: 1- 15
doi: 10.1016/j.ijengsci.2017.04.001
|
|
|
[9] |
FAN K, TAN Q, LIU H, et al Improved energy harvesting from low-frequency small-vibrations through a monostable piezoelectric energy harvester[J]. Mechanical Systems and Signal Processing, 2019, 117: 594- 608
doi: 10.1016/j.ymssp.2018.08.001
|
|
|
[10] |
SU W J, ZU J, ZHU Y Design and develo-pment of a broadband magnet-induced dual cantilever piezoelectric energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2014, 25 (4): 430- 442
doi: 10.1177/1045389X13498315
|
|
|
[11] |
DEHROUYEH-SEMNANI A M, NIKKHAH-BAHRAMI M, YAZDI M R H On nonlinear stability of fluid-conveying imperfect micro pipes[J]. International Journal of Engineering Science, 2017, 120: 254- 271
doi: 10.1016/j.ijengsci.2017.08.004
|
|
|
[12] |
FAROKHI H, GHAYESH M H Supercritical nonlinear parametric dynamics of Timoshen-ko micro beams[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59: 592- 605
doi: 10.1016/j.cnsns.2017.11.033
|
|
|
[13] |
FAROKHI H, GHAYESH M H, GHOLIPOLIPOURG A, et al Nonlinear oscillations of viscoelastic microplates[J]. International Journal of Engineering Science, 2017, 118: 56- 69
doi: 10.1016/j.ijengsci.2017.05.006
|
|
|
[14] |
MASANA R, DAQAQ M F Relative performance of a vibratory energy harvester in mono and bistable potentials[J]. Journal of Sound and Vibration, 2011, 330 (24): 6036- 6052
doi: 10.1016/j.jsv.2011.07.031
|
|
|
[15] |
YANG Z T, YANG J S Connected vibrating piezoelectric bimorph beams as a wideband piezoelectric power harvester[J]. Journal of Intelligent Material Systems and Structures, 2009, 20: 569- 574
doi: 10.1177/1045389X08100042
|
|
|
[16] |
LIEN I C, SHU Y C Array of piezoelectric energy harvesting by the equivalent impedance approach[J]. Smart Materials and Structures, 2012, 21 (8): 082001
doi: 10.1088/0964-1726/21/8/082001
|
|
|
[17] |
SHAHRUZ S M Limits of performance of mechanical bandpass filters used in energy scavenging[J]. Journal of Sound and Vibration, 2006, 293: 449- 461
doi: 10.1016/j.jsv.2005.09.022
|
|
|
[18] |
ALDRAIHEM O J, WETHERHOLD R C, SINGH T Distributed control of laminated beams: Timoshenko theory vs. Euler-Bernoulli theory[J]. Journal of Intelligent Material Systems and Structures, 1997, 8 (2): 149- 157
doi: 10.1177/1045389X9700800205
|
|
|
[19] |
夏呈. 修正铁摩辛柯梁受迫振动响应分析及其应用[D]. 南京: 东南大学, 2017: 6. XIA Cheng. The analysis of forced vibration response of modified Timoshenko beam theory and its application [D]. Nanjing: Southeast University, 2017: 6.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|