Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 947-953    DOI: 10.3785/j.issn.1008-973X.2020.05.012
Mechanical Engineering     
Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator
Ai-bing ZHANG1,*(),Wen-kai YAN1,Dan-dan PANG2,Bao-lin WANG3,Ji WANG1
1. Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2. Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467002, China
3. Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, Penrith 2751, Australia
Download: HTML     PDF(1070KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A theoretical model was provided for the annular thermoelectric generator (ATEG) based on the one-dimensional steady heat transport theory. Effects of configuration size of P-type and N-type thermoelectric couple, asymmetry of material properties of thermoelectric couple and interface contact resistance on the output performance of ATEG were considered. The relationship between configuration size of P-type and N-type thermoelectric couple and their material properties was determined for the ideal ATEG based on the principle of maximum energy conversion efficiency. The influence of interface contact heat resistance and electrical resistance was considered, and the linear simplified solution which is more convenient to use than exact solution was obtained. The optimized angle ratio of N-type to P-type thermoelectric legs in the direction of circumference was also determined when the maximum output power and maximum conversion efficiency of ATEG attained. The interface contact resistance has a significant effect on the optimized anlge ratio for the short ATEG, and this ratio approaches to the ideal solution gradually as the configuration size of ATEG increases. Resluts obtained based on the ideal model can be used to guide the design of the realistic ATEG device when the size parameter sr is greater than 2.



Key wordsannular thermoelectric generator      configuration size of thermoelectric couple      contact resistance      output power      energy conversion efficiency     
Received: 19 April 2019      Published: 05 May 2020
CLC:  TK 01+8  
Corresponding Authors: Ai-bing ZHANG     E-mail: zhangaibing@nbu.edu.cn
Cite this article:

Ai-bing ZHANG,Wen-kai YAN,Dan-dan PANG,Bao-lin WANG,Ji WANG. Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 947-953.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.012     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/947


热电偶臂构型尺寸对环形热电发电器性能的影响

基于一维稳态热传导理论提出环形热电发电器(ATEG)的数学物理模型,考虑P型和N型热电偶臂的构型尺寸、材料热电性质不对称性以及界面接触阻力对其输出性能的影响. 针对理想的环形热电发电器,基于最大能量转换效率原则建立P型和N型热电偶臂构型尺寸与材料性质间的最优定量关系. 考虑界面接触热阻和界面接触电阻效应的影响,给出相对于精确解更方便实用的电流线性简化解,确定环形热电发电器最大输出功率、最大能量转换效率对应的P型、N型热电偶臂圆周角度比. 发现界面接触对小尺寸器件的热电偶臂圆周角度比影响显著,但随着器件构型尺寸的增大,比值逐渐趋近于理想器件的结果.当器件尺寸参数sr>2时,可以基于理想模型指导环形热电发电器的设计计算.


关键词: 环形热电发电器,  热电偶臂构型尺寸,  接触阻力,  输出功率,  能量转换效率 
Fig.1 Schematic diagram of annular thermoelectric generator
θN/θP sr = 1.05 sr = 1.20 sr = 1.50 sr = 2.00
Ie Il e/% Ie Il e/% Ie Il e/% Ie Il e/%
0.1 0.154 5 0.154 7 0.129 4 0.125 8 0.126 1 0.238 5 0.079 8 0.080 0 0.250 0 0.053 2 0.053 3 0.188 0
0.5 0.611 9 0.612 7 0.130 7 0.525 6 0.527 2 0.304 4 0.341 9 0.343 2 0.378 8 0.230 6 0.231 4 0.346 9
1.0 0.971 4 0.972 6 0.123 5 0.872 2 0.875 0 0.321 0 0.580 6 0.582 9 0.394 6 0.395 9 0.397 4 0.378 9
2.0 1.375 5 1.377 2 0.123 6 1.301 1 1.305 6 0.345 9 0.891 8 0.895 7 0.435 4 0.616 9 0.619 6 0.437 7
4.0 1.736 9 1.738 9 0.115 1 1.725 6 1.731 8 0.359 3 1.218 5 1.224 3 0.473 7 0.855 8 0.860 0 0.490 8
Tab.1 Comparison and error analysis between exact solution and linear solution of current (case 1:Bi2Te3-Bi0.5Sb1.5Te3)
材料 α/(μV·K?1) σ /(S·m?1) λ/(W·m?1·K?1)
BiSbTe 213 27 700 0.70
Bi2Te3 200 110 000 1.60
Bi0.5Sb1.5Te3 250 38 000 0.85
Tab.2 Properties of thermoelectric materials BiSbTe, Bi2Te3 and Bi0.5Sb1.5Te3[21]
Fig.2 Relation between output power and length of ATEG
Fig.3 Relation between energy conversion efficiency and length of ATEG
sr η/% θN/θP sr η/% θN/θP
1.05 1.35 1.505 2.00 4.29 2.273
1.20 3.26 1.972 3.00 4.42 2.316
1.50 4.02 2.192 4.00 4.46 2.321
Tab.3 Relationship between energy conversion efficiency, optimized angle ratio in direction of circumference and length of ATEG
Fig.4 Relation between output power and angle ratio of thermoelectric couple in direction of circumference of ATEG
Fig.5 Relation between energy conversion efficiency and angle ratio of thermoelectric couple in direction of circumference of ATEG
Fig.6 Effect of length ratio and angle ratio in direction of circumference of thermoelectric legs on output power of ATEG
Fig.7 Effect of length ratio and angle ratio in direction of circumference of thermoelectric legs on energy conversion efficiency of ATEG
[1]   DISALVO F J Thermoelectric cooling and power generation[J]. Science, 1999, 285 (5428): 703- 706
doi: 10.1126/science.285.5428.703
[2]   HE J, TRITT T M Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357 (6358): 1469
[3]   ROWE D M. CRC handbook of thermoelectrics [M]. Boca Raton: CRC Press, 1995.
[4]   KIM H S, WANG T B, LIU W S, et al Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators[J]. Advanced Functional Materials, 2016, 26 (21): 3678- 3686
doi: 10.1002/adfm.201600128
[5]   GOMEZ M, REID R, OHARA B, et al Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting[J]. Journal of Applied Physics, 2013, 113 (17): 174908
doi: 10.1063/1.4802668
[6]   SAHIN A Z, YIBAS B The thermoelement as thermoelectric power generator: effect of leg geometry on efficiency and power generation[J]. Energy Conversion and Management, 2013, 65: 26- 32
doi: 10.1016/j.enconman.2012.07.020
[7]   NIU Z Q, YU S H, DIAO H, et al Elucidating modeling aspects of thermoelectric generator[J]. International Journal of Heat and Mass Transfer, 2015, 50: 683- 692
[8]   WANG P, WANG K F, WANG B L, et al Modeling of thermoelectric generators with effects of side surface heat convection and temperature dependence of material properties[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1145- 1153
doi: 10.1016/j.ijheatmasstransfer.2019.01.006
[9]   PANG D D, ZHANG A B, WANG B L, et al Theoretical analysis of the thermoelectric generator considering surface to surrounding heat convection and contact resistance[J]. Journal of Electronic Materials, 2019, 48 (1): 596- 602
doi: 10.1007/s11664-018-6759-7
[10]   SIDDIQUE A R M, KRATZ F, MAHMUD S, et al Energy conversion by nanomaterial-based trapezoidal-shaped leg of thermoelectric generator considering convectin heat transfer effect[J]. Journal of Energy Resources Technology, 2019, 141 (8): 082001
doi: 10.1115/1.4042644
[11]   ZHANG A B, WANG B L, PAND D D, et al Effects of interface layers on the performance of annular thermoelectric generators[J]. Energy, 2018, 147: 612- 620
doi: 10.1016/j.energy.2018.01.098
[12]   GRANE D, LAGRANDEUR J, JOVOVIC V, et al TEG on-vehicle performance and model validation and what it means for further TEG development[J]. Journal of Electronic Materials, 2013, 42 (7): 1582- 1591
doi: 10.1007/s11664-012-2327-8
[13]   HE W, SU Y H, WANG Y Q, et al A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors[J]. Renewable Energy, 2012, 37 (1): 142- 149
doi: 10.1016/j.renene.2011.06.002
[14]   MILJKOVIC N, WANG E N Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons[J]. Solar Energy, 2011, 85 (11): 5843- 5855
[15]   MIN G, ROWE D M Ring-structured thermoelectric module[J]. Semiconductor Science and Technology, 2007, 22 (8): 880- 883
doi: 10.1088/0268-1242/22/8/009
[16]   SHEN Z G, WU S Y, XIAO L Theoretical analysis on the performance of annular thermoelectric couple[J]. Energy Conversion and Management, 2015, 89: 244- 250
doi: 10.1016/j.enconman.2014.09.071
[17]   ZHANG A B, WANG B L, PANG D D, et al Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators[J]. Energy Conversion and Management, 2018, 166: 337- 342
doi: 10.1016/j.enconman.2018.04.042
[18]   LBEAGWU O L Modelling and comprehensive analysis of TEGs with diverse variable leg geometry[J]. Energy, 2019, 180: 90- 106
doi: 10.1016/j.energy.2019.05.088
[19]   JI D X, WEI Z B, JOSEP P, et al Geometry optimization of thermoelectric modules: simulation and experimental study[J]. Energy Conversion and Management, 2019, 195: 236- 243
doi: 10.1016/j.enconman.2019.05.003
[20]   SHITTU S, LI G Q, ZHAO X D, et al Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect[J]. Renewable Energy, 2019, 130: 930- 942
doi: 10.1016/j.renene.2018.07.002
[1] Cong-cong FU,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Wen-bin TAN. Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 475-482.
[2] Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.
[3] ZHANG Ya-dong, CHANG Chun-rui, ZHANG Zhi-ming, ZHANG Hao-qiang, SUN Hong-chan, AN Li-bao. Improvement on electrical contact characteristics of Au-doped carbon nanotubes by acid oxidation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1624-1630.
[4] TIAN Yan ping, JIN Xiao ling, WANG Yong. Strengthening phenomenoninspirited optimum design of  random vibration energy harvester[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 934-940.
[5] WANG Jiu gen,FENG Lan lan,LI Yang. Influences of surface topography on electrical pitting[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2025-2032.
[6] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1579-1584.