Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 940-946    DOI: 10.3785/j.issn.1008-973X.2020.05.011
Mechanical Engineering     
Nonlinear stochastic optimal voltage bounded control for axial compressed beam
Kai-ming HU1,2(),Hua LI2,*()
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(948KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The electromechanical energy expressions of axial compressed beam with surface attached piezoelectric actuators were derived, and then a nonlinear stochastic vibration active control model of axial compressed beam was developed, based on the geometric nonlinear theory, multi-physics coupling theory of piezoelectric materials and Lagrange's equation. The purpose is to deal with the low-frequency nonlinear stochastic vibration of the axial compressed slim structures which is easily led by the external disturbance. A modified nonlinear stochastic optimal voltage bounded control strategy was derived by the stochastic average method and dynamical programming equation, in consideration of the voltage limitation of piezoelectric actuators. This voltage control strategy consists of unbounded optimal voltage control and bang-bang voltage control, so that has a better continuity than bang-bang voltage control strategy. The derived optimal voltage bounded control strategy were applied to control the nonlinear stochastic vibration of an axial compressed simply supported beam. Numerical results of various parameters cases show that the required control voltage of piezoelectric actuators is lower than that of bang-bang voltage control, with slight loss of vibration control effectiveness.



Key wordspiezoelectric structure      axial compressed beam      nonlinear stochastic dynamics      optimal control      bounded voltage     
Received: 01 May 2019      Published: 05 May 2020
CLC:  O 324  
Corresponding Authors: Hua LI     E-mail: kaiminghu@cjlu.edu.cn;lhlihua@zju.edu.cn
Cite this article:

Kai-ming HU,Hua LI. Nonlinear stochastic optimal voltage bounded control for axial compressed beam. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 940-946.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/940


轴向受压梁非线性随机最优电压有界控制

针对轴向受压细长结构容易在外界扰动下产生低频大幅振动的问题,基于几何非线性理论、压电耦合场理论和拉格朗日方程,推导表面贴附压电作动片的轴向受压梁的机电能量表达式,建立轴向受压梁的非线性随机振动压电主动控制模型;考虑压电作动器工作电压的限制因素,利用随机平均法和动态规划方程导出改进型的非线性随机最优电压有界控制策略. 该策略包括无界最优电压和bang-bang控制电压,因而较bang-bang电压控制律具有更好的连续性. 对简支轴向受压梁在多种情况下的非线性随机振动最优控制进行数值仿真,与bang-bang电压控制律进行比较,结果表明本研究导出的改进型电压控制律所需的压电作动器控制电压大幅下降,而振动控制效果略有降低.


关键词: 压电结构,  轴向受压梁,  非线性随机动力学,  最优控制,  电压有界 
Fig.1 Axial compressed beam with surface attached piezoelectric actuation patches
参数部件 L/m b/m h/mm ρ/(g?cm?3) E/GPa d31/(pC?N?1)
1.00 0.01 4.0 2.7 70 ?
压电作动器 0.02 0.01 0.5 7.8 61 ?300
Tab.1 Properties of simply supported beam and piezoelectric actuators
Fig.2 Nonlinear amplitude frequency response of axial compressed beam
Fig.3 Displacement response sample and control voltage sample of compressed simply supported beam under two control laws
Fig.4 Variation of control effectiveness and voltage control efficiency with function of excitation intensity under two control laws
Fig.5 Variation of control effectiveness and voltage control efficiency with function of voltage bound under two control laws
[1]   EMAM S A, NAYFEH A H Postbuckling and free vibrations of composite beams[J]. Composite Structures, 2009, 88 (4): 636- 642
doi: 10.1016/j.compstruct.2008.06.006
[2]   关富玲, 戴璐 双环可展桁架结构动力学分析与试验研究[J]. 浙江大学学报:工学版, 2012, 46 (9): 1605- 1610
GUAN Fu-ling, DAI Lu Dynamic analysis and test research of double-ring deployable truss structure[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1605- 1610
[3]   赵伟东, 黄永玉, 杨亚平 弹性基础上压杆的横向非线性自由振动与屈曲[J]. 力学与实践, 2014, 36 (3): 303- 307
ZHAO Wei-dong, HUANG Yong-yu, YANG Ya-ping The transverse nonlinear free vibration and the buckling of compressive bar on an elastic foundation[J]. Mechanics in Engineering, 2014, 36 (3): 303- 307
doi: 10.6052/1000-0879-13-409
[4]   邓婷, 姜旭曈, 丁敏, 等 温室风振分析中的压杆弯曲振动动态刚度阵模型[J]. 中国农业大学学报, 2018, 23 (1): 120- 125
DENG Ting, JIANG Xu-tong, DING Min, et al Dynamic stiffness matrix models for the flexural vibration of compression bar in greenhouse wind vibration analysis[J]. Journal of China Agricultural University, 2018, 23 (1): 120- 125
[5]   GIANNOPOULOS G, GROEN M, VOS R, et al Dynamic performance of post-buckled precompressed piezoelectric actuator elements[J]. International Journal of Structural Stability and Dynamics, 2012, 12 (5): 1250042
doi: 10.1142/S0219455412500423
[6]   VOS R, BARRETT R Dynamic elastic-axis shifting: an important enhancement of piezoelectric postbuckled precompressed actuators[J]. AIAA Journal, 2010, 48 (3): 583- 590
doi: 10.2514/1.38339
[7]   MASANA R, DAQAQ M F Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters[J]. Journal of Vibration and Acoustics, 2011, 133 (1): 011007
doi: 10.1115/1.4002786
[8]   CAI T, MUKHERJEE R, DIAZ A R Vibration suppression in a simple tension-aligned array structure[J]. AIAA Journal, 2014, 52 (3): 504- 516
doi: 10.2514/1.J052127
[9]   FRIDMAN Y, ABRAMOVICH H Enhanced structural behavior of flexible laminated composite beams[J]. Composite Structures, 2008, 82 (1): 140- 154
doi: 10.1016/j.compstruct.2007.05.007
[10]   SRIDHARAN S, KIM S Piezoelectric control of columns prone to instabilities and nonlinear modal interaction[J]. Smart Materials and Structures, 2008, 17 (3): 035001
doi: 10.1088/0964-1726/17/3/035001
[11]   ZHANG Y H Nonlinear vibration control of a piezoelectric beam with a fuzzy logic controller[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 52 (1/2): 1- 10
[12]   LI L, SONG G, OU J Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control[J]. Journal of Vibration and Control, 2010, 16 (10): 1503- 1526
doi: 10.1177/1077546309103284
[13]   ZHU W Q, HUANG Z L, YANG Y Q Stochastic averaging of quasi-integrable Hamiltonian systems[J]. Journal of Applied Mechanics, 1997, 64 (4): 975- 984
doi: 10.1115/1.2789009
[14]   ZHU W Q, YING Z G, SOONG T T An optimal nonlinear feedback control strategy for randomly excited structural systems[J]. Nonlinear Dynamics, 2001, 24 (1): 31- 51
doi: 10.1023/A:1026527404183
[15]   朱位秋.非线性随机动力学与控制—Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.
[16]   ZHAI J J, ZHAO G Z, SHANG L Y Integrated design optimization of structure and vibration control with piezoelectric curved shell actuators[J]. Journal of Intelligent Material Systems and Structures, 2016, 27 (19): 2672- 2691
doi: 10.1177/1045389X16641203
[17]   ZHANG Y, NIU H, XIE S, et al Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator[J]. Smart Materials and Structures, 2008, 17 (3): 035024
doi: 10.1088/0964-1726/17/3/035024
[18]   LI H, LI H Y, CHEN Z B, et al Experiments on active precision isolation with a smart conical adapter[J]. Journal of Sound and Vibration, 2016, 374: 17- 28
doi: 10.1016/j.jsv.2016.03.039
[19]   HU K M, LI H Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166- 185
doi: 10.1016/j.jsv.2018.04.021
[20]   TZOU H S. Piezoelectric shells: distributed sensing and control of continua [M]. Boston/Dordrecht: Kluwer Academic Publishers, 1993.
[21]   YING Z G, ZHU W Q Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter[J]. Nonlinear Dynamics, 2017, 22 (2): 233- 241
[22]   YING Z G, ZHU W Q A stochastically averaged optimal control strategy for quasi-Hamiltonian systems with actuator saturation[J]. Automatica, 2006, 42 (9): 1577- 1583
doi: 10.1016/j.automatica.2006.04.023
[23]   HUAN R H, ZHU W Q Stochastic optimal control of quasi integrable Hamiltonian systems subject to actuator saturation[J]. Journal of Vibration and Control, 2009, 15 (1): 85- 99
doi: 10.1177/1077546307086893
[1] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[2] LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 902-912.
[3] XIAO Yang, GUAN Cheng, WANG Fei. Energy management strategy for torque coupling based hydraulic hybrid excavator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 70-77.
[4] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1253-1257.
[5] CHAI An, DIAO Qian, JIANG Min. Design and development of urban intelligent traffic signal control system[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1241-1246.
[6] LIU Xin-Gao, CHEN Long. Nested constraintpreferred optimization method for fixed boundary optimal control problem[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1247-1250.
[7] HU Xian, LUO Yao-Chi, CHEN Yan-Ban. Nonlinear active control of tensegrity structures[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1979-1984.