Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2197-2205    DOI: 10.3785/j.issn.1008-973X.2019.11.018
Civil Engineering, Municipal Engineering     
Investigation of artificial sweetener sucralose in typical drinking water systems
Shi-cui ZHU1(),Si-jia LU1,Ya-li SONG2,Li-dan ZHU1,Yun ZHANG3,Xiao-yan MA1,*()
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
3. Water Quality Monitoring Station, Hangzhou Water Group Co. Ltd, Hangzhou 310014, China
Download: HTML     PDF(1142KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Solid phase extraction-gas chromatography/mass spectrometry (SPE-GC/MS) was employed for accurate detection of micro sucralose in aqueous system. The pollution information of sucralose in a water cycle, including sanitary sewage, water source, potable water treatment process and terminal water supply network, was obtained, with two cities in Zhejiang Province as the main investigation object. The variation of sucralose in the conventional and the advanced water treatment units was investigated and the control ability of treatment process was evaluated. Results showed that the detection rate of sucralose was 100% in water production and water supply systems. The mass concentration values of sucralose in the source water, water after conventional treatment process and water after ozone-activated carbon advanced treatment process were 69.2~2 070.1, 538.1~856.9, 177.7~357.9 ng/L, respectively. Advance treatment process was more effective for sucralose removal than conventional treatment, but was still unable to achieve complete removal. The initial mass concentration of sucralose in the sewage water was 1 033.4~2 626.3 ng/L, much higher than that in the source water. The biological process can not deal with sucralose effectively, and sucralose mass concentration in the emission water remained 917.6~2 031.2 ng/L, with most sucralose discharged into the receiving water body. Under the continuous discharge condition, if the increase rate of inflow mass concentration is higher than the environmental degradation rate, sucralose accumulation in the waterbody may occur.



Key wordsemerging contaminant      artificial sweetener      sucralose      drinking water system      pollution distribution     
Received: 16 September 2018      Published: 21 November 2019
CLC:  TU 991  
  X 522  
Corresponding Authors: Xiao-yan MA     E-mail: 18989489305@163.com;mayaner620@163.com
Cite this article:

Shi-cui ZHU,Si-jia LU,Ya-li SONG,Li-dan ZHU,Yun ZHANG,Xiao-yan MA. Investigation of artificial sweetener sucralose in typical drinking water systems. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2197-2205.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.018     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2197


典型饮水系统中人工甜味剂三氯蔗糖的调查

采用固相萃取-气相色谱/质谱法(SPE-GC/MS)实现水环境中微量三氯蔗糖的准确检测,以浙江省2座城市为主要调查对象,获取自生活污水厂、水源、饮用水处理工艺至终端供水管网用水全循环过程中三氯蔗糖的污染信息;考察饮用水常规及深度处理工艺单元中三氯蔗糖的存在水平及变化规律,评价工艺对三氯蔗糖的控制能力. 结果表明,三氯蔗糖在制水及供水系统中的检出率为100%,在水源水、经常规处理后的出水、经臭氧-活性炭深度处理后的水中的质量浓度分别为69.2~2 070.1、538.1~856.9、177.7~357.9 ng/L,深度处理工艺控制三氯蔗糖的效果较常规工艺略好,但仍无法实现彻底去除. 生活污水中三氯蔗糖的初始质量浓度较水源水中高,为1 033.4~2 626.3 ng/L,生物处理效果不佳,出水中的质量浓度为917.6~2 031.2 ng/L,大部分通过排放进入接纳水体. 在持续排放导致入流质量浓度增长指数高于环境降解速率的条件下,三氯蔗糖在水体中可能产生浓度累积效应.


关键词: 新型污染物,  人工甜味剂,  三氯蔗糖,  饮用水系统,  污染分布 
Fig.1 Treatment process of target waterworks and sampling sites in water distribution system
Fig.2 Gas chromatogram and mass spectrogram of sucralose
ρj/(μg?L?1 ρ0/(μg?L?1 Rec/% RSD/%
超纯水 0.1 0 97.6 3.5
2.0 0 100.4 3.7
5.0 0 101.5 4.7
管网水 0.1 0.17 94.8 4.6
2.0 0.17 88.1 3.2
5.0 0.17 107.7 2.3
原水 0.1 0.32 94.8 2.5
2.0 0.32 95.0 0.6
5.0 0.32 90.5 3.6
Tab.1 Spiked recovery of sucralose detected by SPE-GC/MS method
采样时间 Q江-1 Q江-2 Q江-3 T溪 XT溪 L水库 T湖
2017.12 904.4 921.6 657.3 729.1 770.3 133.8 1 062.4
2018.01 1 030.8 738.9 559.1 348.0 678.9 69.2 2 070.1
2018.05 958.7 1 089.9 437.4 420.5 722.2 102.2 786.3
Tab.2 Distribution of sucralose in source water environment (ng∙L−1
Fig.3 Sucralose distribution and removal efficiency in sewage plant g
Fig.4 Sucralose mass concentration and removal efficiency of each treatment unit in waterworks e
Fig.5 Sucralose mass concentration and removal efficiency of each treatment unit in waterworks f
采样时间 水厂a 水厂b 水厂c 水厂d
ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/%
2017.12 904.4 729.2 19.4 921.6 323.2 64.9 657.3 340.8 48.1 729.1 301.4 58.7
2018.01 1 030.8 856.9 16.9 738.9 288.6 60.9 559.1 282.7 49.4 348.0 163.9 52.9
2018.05 958.7 820.1 14.5 1 089.9 329.7 69.7 437.4 255.3 41.6 420.5 178.8 57.5
工艺情况 常规工艺 深度处理工艺 深度处理工艺 深度处理工艺
Tab.3 Mass concentration distribution of sucralose in several waterworks
采样点 ρB/(ng?L?1 采样点 ρB/(ng?L?1
GW1 270.1 GW6 349.6
GW2 252.2 GW7 177.7
GW3 233.9 GW8 340.1
GW4 229.5 GW9 334.2
GW5 357.9
Tab.4 Distribution of sucralose in water supply network
[1]   凌关庭. 食品添加剂手册[M]. 北京: 化学工业出版社, 2003: 160-161.
[2]   PARKJ H, CARVALHO G B, MURPHY K R, et al Sucralose suppresses food intake[J]. Cell Metabolism, 2017, 25 (3): 484- 485
doi: 10.1016/j.cmet.2017.02.011
[3]   WANG Q P, SIMPSON S J, HERZOG H, et al Chronic sucralose or l-glucose ingestion does not suppress food intake[J]. Cell Metabolism, 2017, 26 (2): 279- 280
doi: 10.1016/j.cmet.2017.07.002
[4]   MAGNUSON B A, ROBERTS A, NESTMANN E R Critical review of the current literature on the safety of sucralose[J]. Food and Chemical Toxicology, 2017, 106: 324- 355
doi: 10.1016/j.fct.2017.05.047
[5]   CHEN S W, ZHANG H Y, LI S Investigaiton of mechanism involved in TiO2 and photo-feton photocatalytic degradaton of emerging contaminant sucralose in aqueous media [J]. Procedia Environmental Science, 2016, 31: 753- 757
doi: 10.1016/j.proenv.2016.02.064
[6]   XU Y, LIN Z Y, WANG Y, et al The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose[J]. Chemical Engineering Journal, 2017, 317: 561- 569
doi: 10.1016/j.cej.2017.02.058
[7]   BUERGE I J, KELER M, BUSER H R, et al Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater[J]. Environmental Science and Technology, 2011, 45 (2): 615- 621
doi: 10.1021/es1031272
[8]   ORDONEZ E Y, QUINTANA J B, RODIL R, et al Determination of artificial sweeteners in sewage sludge samples using pressurised liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1320: 10- 16
doi: 10.1016/j.chroma.2013.10.049
[9]   马铃, 冯碧婷, 周萌, 等 人工甜味剂在不同类型土壤中的淋溶行为研究[J]. 生态毒理学报, 2016, 11 (2): 650- 657
MA Lin, FENG Bi-ting, ZHOU Meng, et al Study on the leaching behavior of typical artificial sweeteners in soils[J]. Asian Journal of Ecotoxicology, 2016, 11 (2): 650- 657
[10]   LUBICK N Artificial sweetener persists in the environment[J]. Environmental Science and Technology, 2008, 42 (9): 3125
doi: 10.1021/es087043g
[11]   BAENA-NOGUERAS R M, TRAVERSO-SOTO J M, BIEL-MAESO M, et al Sources and trends of artificial sweeteners in coastal waters in the bay of Cadiz (NE Atlantic)[J]. Marine Pollution Bulletin, 2018, 135: 607- 616
doi: 10.1016/j.marpolbul.2018.07.069
[12]   YANG Y Y, ZHAO J L, LIU Y S, et al Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination[J]. Science of the Total Environment, 2018, 616/617: 816- 823
doi: 10.1016/j.scitotenv.2017.10.241
[13]   ROY J W, VAN STEMPVOORT D R, BICKERTON G Artificial sweeteners as potential tracers of municipal landfill leachate[J]. Environmental Pollution, 2014, 184: 89- 93
doi: 10.1016/j.envpol.2013.08.021
[14]   YANG Y Y, LIU W R, LIU Y S, et al Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China[J]. Science of the Total Environment, 2017, 590/591: 616- 619
[15]   RICHARDSON S D, TERNES T A Water analysis: emerging contaminants and current issues[J]. Analytical Chemistry, 2011, 83 (12): 4614- 4648
doi: 10.1021/ac200915r
[16]   BRORSTROM-LUNDEN E, SVENSON A, VIKTOR T, et al. Measurements of sucralose in the Swedish screening program 2007 [R]. Stockholm: Swedish Environmental Research Institute, 2008.
[17]   KOKOTOU M G, THOMAIDIS N S Determination of eight artificial sweeteners in wastewater by hydrophilic interaction liquid chromatography-tandem mass spectrometry[J]. Analytical Methods, 2013, 5: 3825- 3833
doi: 10.1039/c3ay40599k
[18]   SCHEURER M, STORCK F R, BRAUCH H J, et al Performance of conventional mufti-barrier drinking watertreatment plants for the removal of four artificial sweeteners[J]. Water research, 2010, 44 (12): 3573- 3584
doi: 10.1016/j.watres.2010.04.005
[19]   LOOS R, GAWLIK B M, BOETTCHER K, et al Sucralose screening in European surface waters using a solid-phaseextraction-liquid chromatography-triple quadrupole mass spectrometry method[J]. Journal of Chromatography A, 2009, 1216 (7): 1126- 1131
doi: 10.1016/j.chroma.2008.12.048
[20]   MAWHINNEY D B, YOUNG R, VANDERFORD B J, et al Artificial sweetener sucralose in US drinking water systems[J]. Environmental Science and Technology, 2011, 45 (20): 8716- 8722
doi: 10.1021/es202404c
[21]   FERRER I, ZWEIGENBAUM J A, THURMAN E M Analytical methodologies for the detection of sucralose in water[J]. Analytical Chemistry, 2013, 85 (20): 9581- 9587
doi: 10.1021/ac4016984
[22]   QIN X F Etiology of inflammatory bowel disease: a unified hypothesis[J]. World Journal of Gastroenterology, 2012, 18 (15): 1708- 1722
doi: 10.3748/wjg.v18.i15.1708
[23]   PEPINO M Y, WICE B M, TIEMANN C D, et al Sucralose affects glycemic and hormonal responses to an oral glucose load[J]. Diabetes Care, 2013, 36 (9): 2530- 2535
doi: 10.2337/dc12-2221
[24]   SUEZ J, KOREN T, ZEEVI D, et al Artificial sweeteners induce glucose intolerance by altering the gut microbiota[J]. Nature, 2014, 514 (7521): 181- 186
doi: 10.1038/nature13793
[25]   LANGE F T, SCHEURER M, BRAUCH H J Artificial sweeteners-a recently recognized class of emerging environmental contaminants: a review[J]. Analytical and Bioanalytical Chemistry, 2012, 403 (9): 2503- 2518
doi: 10.1007/s00216-012-5892-z
[26]   GAN Z W, SUN H W, FENG B T, et al Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China[J]. Water Research, 2013, 47 (14): 4928- 4937
doi: 10.1016/j.watres.2013.05.038
[27]   GAN Z W, SUN H W, YAO Y M, et al Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin[J]. Science of the Total Environment, 2014, 488/489: 168- 175
doi: 10.1016/j.scitotenv.2014.04.084
[28]   干志伟.人工甜味剂在环境中的分布、迁移转化及光降解机理研究[D]. 天津: 南开大学, 2014.
GAN Zhi-Wei. Distribution, fate, and photolysis mechanism of artificial sweeteners in environment [D]. Tianjin: Nankai University, 2014.
[29]   RICHARDSON S D, KIMURA S Y Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions[J]. Environmental Technology and Innovation, 2017, 8: 40- 56
doi: 10.1016/j.eti.2017.04.002
[30]   ORDONEZ E Y, QUINTANA J B, RODIL R, et al Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1256: 197- 205
doi: 10.1016/j.chroma.2012.07.073
[31]   卫生部. 食品中三氯蔗糖(蔗糖素)的测定: GB/T 22255—2014 [S]. 北京: 中国标准出版社, 2014.
[32]   陈晓霞, 游景水, 杨祖伟 高效液相色谱法测定保健食品中三氯蔗糖的含量[J]. 食品安全质量检测学报, 2015, 6 (5): 1883- 1888
CHEN Xiao-xia, YOU Jing-shui, YANG Zu-wei Determination of sucralose content in health food by high performance liquid chromatography[J]. Journal of Food Safety and Quality, 2015, 6 (5): 1883- 1888
[33]   MEAD R N, MORGAN J B, AVERYJ B, et al Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States[J]. Marine Chemistry, 2009, 116 (1–4): 13- 17
doi: 10.1016/j.marchem.2009.09.005
[34]   QIU W L, WANG Z F, NIE W L, et al GC–MS determination of sucralose in Splenda[J]. Chromatographia, 2007, 66 (11/12): 935- 939
[35]   HOQUE M E, CLOUTIER F, ARCIERI C, et al Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon[J]. Science of the Total Environment, 2014, 487: 801- 812
doi: 10.1016/j.scitotenv.2013.12.063
[36]   SOH L, CONNORS K A, BROOKS B W, et al Fate of sucralose through environmental and water treatment processes and impact on plant indicator species[J]. Environmental Science and Technologyl, 2011, 45 (4): 1363- 1369
doi: 10.1021/es102719d
[37]   BUERGE I J, BUSER H R, KAHLE M, et al Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater[J]. Environmental Science and Technology, 2009, 43 (12): 4381- 4385
doi: 10.1021/es900126x
[38]   XU Y, WU Y, ZHANG W, et al Performance of artificial sweetener sucralose mineralization via UV/O3 process: kinetics, toxicity and intermediates [J]. Chemical Engineering Journal, 2018, 353: 626- 634
doi: 10.1016/j.cej.2018.07.090
[39]   TORRES C I, RAMARKRISHNA S, CHIU C A, et al Fate of sucralose during wastewater treatment[J]. Environmental Engineering Science, 2011, 28 (5): 325- 331
doi: 10.1089/ees.2010.0227
[1] Da CHEN,Jing-qing LIU,Huan-yu CHEN,Ruo-wei WANG. Spatiotemporal change rules of water quality in cut-off water pipelines in district metering areas (DMA)[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1704-1710.
[2] Min SUN,Jun-xin BAO,Bei XU,Hao ZHOU. Distribution characteristics of perfluorinated compounds in sludge wastewater and sludge from drinking water treamtment plant[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1835-1842.
[3] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1031-1039.
[4] LI Cong, ZHAO Jing guo, YANG Yu long,ZHAO Tao tao. Effect of UV disinfection on residual chlorine and THMs formation in filter water[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 536-544.
[5] LIU Jing qing, LUO Zhi feng, ZHOU Xiao yan, HE Xiao fang,REN Hong xing, HU Bao lan, QIU Shang de. Influence of shear stress on growth of biofilm attached to drinking water distribution pipes[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 250-256.
[6] YANG Yan, ZHANG Tu-qiao, LIU Wei-chao. Calculation method of contaminant intrusion flow rate induced by negative pressure events in water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1262-1267.
[7] JIANG Wei, LIU Jing-qing, YE Ping, LI Hang-jia. Use of oxidation-reduction potential to monitor iron release from corroded iron pipes in drinking water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 769-775.
[8] HE Zhong-hua,YUAN Yi-xing. Reliability optimization design of water distribution system based on surplus energy entropy[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1188-1194.
[9] GAO Jiu-li, LIU Jing-qing, ZHANG Tu-qiao, LI Cong, JIANG Wei. Effects of chloride and humic acid on iron release in water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1321-1328.
[10] YU Jie-ze, LI Cong, ZHANG Tu-qiao,MAO Xin-wei. Optimal analysis of improved water quality performance and rechlorination cost[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1140-1147.
[11] CHENG Wei-ping , ZHAO Dan-dan, XU Gang, JIANG Jian-qun. Pipe burst hydraulic model of water distribution system and pipe burst location[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1057-1062.
[12] ZHANG Tu-qiao,YU Jie-ze,YANG De-jun,JIN Jun-wu. Optimization analysis for influence of water quality monitoring
station on booster chlorination in water distribution system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1243-1247.
[13] CHEN Lei. Genetic least squares support vector machine approach
to hourly water consumption prediction
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1100-1103.
[14] ZHANG Yan, ZHANG Nian-qing. Optimization of locations of booster chlorination stations in
water distribution system based on theory of partial coverage
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 695-698.
[15] LI Hong-wei, WANG Meng-lin, LV Mou, LI Hong-yan. Simulation  of contamination source identification  in water
supply system and analysis of influencing factors
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 81-86.