Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2058-2066    DOI: 10.3785/j.issn.1008-973X.2019.11.002
Mechanical Engineering     
Ultrasonic array levitation technology for large size plate like components
Er-yong WU1(),Ye HAN1,2,Li-qiang LI1,Shuang DENG1,Ke-ji YANG1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. SINOPEC Long-distance Oil and Gas Pipeline Inspection Co. Ltd, Xuzhou 221008, China
Download: HTML     PDF(1546KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to increase the ultrasonic levitation performance and its flexible application ability, and satisfy the noncontact grasping and transportation application requirements for the components including but not limited to integrated circuit silicon wafer and solar cell plate, a ultrasonic levitation technology based on the transducer array for large size plate like components was studied. Using the spatial impulse response method, the theoretical expressions for transducer array’s sound pressure distribution in non-free ultrasonic field and the acoustic radiation force at levitated object were established. These theoretical expressions’ correctness was verified by simulation results of COMSOL software. The ultrasonic levitation experimental device based on the transducer array was set up, and the acoustic levitation experiments for variable size silicon wafer under the same excited voltage and fixed size silicon wafer under variable excited voltages were carried out. Experimental results show that the proposed technology can realize stable height ultrasonic levitation of object whose size is far larger than the wavelength, and when the levitated object’s weight is less than the ultrasonic array maximum load capacity, the levitation height is not obvious related to the object size and the excited voltage.



Key wordslarge size plate like component      transducer array      ultrasonic levitation      acoustic field control      acoustic radiation force     
Received: 11 April 2019      Published: 21 November 2019
CLC:  TB 553  
Cite this article:

Er-yong WU,Ye HAN,Li-qiang LI,Shuang DENG,Ke-ji YANG. Ultrasonic array levitation technology for large size plate like components. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2058-2066.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2058


大尺寸板状构件超声阵列悬浮技术

为了提高超声悬浮性能及其柔性化应用能力,满足包括集成电路硅片和太阳能电池极板等构件的非接触抓取和输运的应用需求,开展基于换能器阵列的大尺寸板状构件超声悬浮技术研究. 采用空间脉冲响应函数法,建立换能器阵列非自由超声场的声压分布及该声场内悬浮体所受声辐射力的理论表达式,结合COMSOL软件进行仿真研究,验证该理论表达式的正确性. 搭建基于换能器阵列的超声悬浮实验装置,分别开展同一激励电压不同尺寸硅片以及同一尺寸硅片不同激励电压下的声悬浮实验. 结果表明:该技术可以实现对尺寸远大于波长的物体在稳定高度的超声悬浮,且当悬浮体的重量小于超声阵列的最大负载能力时,悬浮高度随物体尺寸和激励电压的变化不明显.


关键词: 大尺寸板状构件,  换能器阵列,  超声悬浮,  声场控制,  声辐射力 
Fig.1 Coordinate for acoustic field calculation of circular transducer element
Fig.2 Computational model for spatial impulse response of ultrasonic array in free space
Fig.3 y-z plane arrangement of real and virtual sound sources under plane reflection
Fig.4 Acoustic field simulation model in free space for single transducer array element
Fig.5 Acoustic field simulation results in free space for single transducer element
Fig.6 Acoustic field simulation results in free space and with levitated object
Fig.7 Simplified acoustic levitation simulation model
Fig.8 Acoustic field distribution with different levitated heights
Fig.9 Relationship between normalized levitation force and levitated height
Fig.10 Ultrasonic levitation experimental device based on transducer array
Fig.11 Relationship between levitated height and size of silicon wafer
Fig.12 Experimental results of ultrasonic levitation of irregular silicon wafers
Fig.13 Experimental results on levitated height of silicon wafer with variable excitation voltage
Fig.14 Experimental results on relationship between levitation ability and excitation voltage of ultrasonic arrays
[1]   KING L V On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 147 (861): 212- 240
doi: 10.1098/rspa.1934.0215
[2]   GOR′KOV L P Forces acting on a small particle in an acoustic field within an ideal fluid[J]. Doklady Akademii Nauk SSSR, 1961, 140 (1): 88- 91
[3]   ZHAO S, WALLASCHEK J A standing wave acoustic levitation system for large planar objects[J]. Archive of Applied Mechanics, 2011, 81 (2): 123- 139
doi: 10.1007/s00419-009-0401-3
[4]   SETTNES M, BRUUS H Forces acting on a small particle in an acoustical field in a viscous fluid[J]. Physical Review E, 2012, 85 (1): 016327
doi: 10.1103/PhysRevE.85.016327
[5]   李新波, 王英伟, 王宇昆, 等 凹球面双发射极超声阵列悬浮能力研究[J]. 西安交通大学学报, 2018, 52 (11): 1- 5
LI Xin-bo, WANG Ying-wei, WANG Yu-kun, et al Study on the suspension capacity of concave spherical double emitter ultrasonic array[J]. Journal of Xi'an Jiaotong University, 2018, 52 (11): 1- 5
[6]   DENG S, JIA K, WU E, et al Controllable micro-particle rotation and transportation using sound field synthesis technique[J]. Applied Sciences, 2018, 8 (73): 1- 16
[7]   PRISBREY M, GREENHALL J, VASQUEZ F G, et al Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium[J]. Journal of Applied Physics, 2017, 121 (1): 014302
doi: 10.1063/1.4973190
[8]   CASTLE J, BUTTS M, HEALEY A, et al Ultrasound-mediated targeted drug delivery: recent success and remaining challenges[J]. American Journal of Physiology-heart and Circulatory Physiology, 2013, 304 (3): 350- 357
doi: 10.1152/ajpheart.00265.2012
[9]   GUO F, LI P, FRENCH J B, et al Controlling cell-cell interactions using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (1): 43- 48
doi: 10.1073/pnas.1422068112
[10]   SANTESSON S, NILSSON S Airborne chemistry: acoustic levitation in chemical analysis[J]. Analytical and Bioanalytical Chemistry, 2004, 378 (7): 1704- 1709
doi: 10.1007/s00216-003-2403-2
[11]   VANDAELE V, DELCHAMBRE A, LAMBERT P Acoustic wave levitation: handling of components[J]. Journal of Applied Physics, 2011, 109 (12): 124901
doi: 10.1063/1.3594245
[12]   SANTESSON S, JOHANSSON J, TAYLOR L S, et al Airborne chemistry coupled to raman spectroscopy[J]. Analytical Chemistry, 2003, 75 (9): 2177- 2180
doi: 10.1021/ac026302w
[13]   SCHEELINE A, BEHRENS R L Potential of levitated drops to serve as microreactors for biophysical measurements[J]. Biophysical Chemistry, 2012, 165/166: 1- 12
doi: 10.1016/j.bpc.2012.03.008
[14]   ANDRADE M A B, BERNASSAU A L, ADAMOWSKI J C Acoustic levitation of a large solid sphere[J]. Applied Physics Letters, 2016, 109: 044101
doi: 10.1063/1.4959862
[15]   HANSON A R, DOMICH E G, ADAMS H S Acoustical liquid drop holder[J]. Review of Scientific Instruments, 1964, 35 (8): 1031- 1034
doi: 10.1063/1.1718916
[16]   ANDRADE M A, BUIOCHI F, ADAMOWSKI J C Finite element analysis and optimization of a single-axis acoustic levitator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57 (2): 469- 479
doi: 10.1109/TUFFC.2010.1427
[17]   BAER S, ANDRADE M A B, ESEN C, et al Analysis of the particle stability in a new designed ultrasonic levitation device[J]. Review of Scientific Instruments, 2011, 82 (10): 105- 111
[18]   解文军. 声悬浮优化设计理论及其应用研究[D]. 西安: 西北工业大学, 2002.
XIE Wen-jun. Optimization theory of acoustic levitation and its experimental applications [D]. Xi'an: Northwestern Polytechnical University, 2002.
[19]   潘祥生, 邢立华, 李勋, 等 聚焦式超声悬浮[J]. 北京航空航天大学学报, 2006, 32 (1): 79- 82
PAN Xiang-sheng, XING Li-hua, LI XUN, et al Focusing ultrasonic levitation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32 (1): 79- 82
doi: 10.3969/j.issn.1001-5965.2006.01.019
[20]   FORESTI D, NABAVI M, KLINGAUF M, et al Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (31): 12549- 12554
doi: 10.1073/pnas.1301860110
[21]   HOSHI T, OCHIAI Y, REKIMOTO J Three-dimensional noncontact manipulation by opposite ultrasonic phased arrays[J]. Japanese Journal of Applied Physics, 2014, 53 (7S): 07KE07
doi: 10.7567/JJAP.53.07KE07
[22]   DENG S, JIA K, CHEN J, et al Relative position control and coalescence of independent microparticles using ultrasonic waves[J]. Journal of Applied Physics, 2017, 121 (18): 184503
doi: 10.1063/1.4983015
[23]   MARZO A, CORKETT T, DRINKWATER B W Ultraino: an open phased-array system for narrowband airborne ultrasound transmission[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65 (1): 102- 111
doi: 10.1109/TUFFC.2017.2769399
[24]   SILVA G T, BAGGIO A L Designing single-beam multitrapping acoustical tweezers[J]. Ultrasonics, 2015, 56 (4): 49- 55
[25]   MARZO A, SEAH S A, DRINKWATER B W, et al Holographic acoustic elements for manipulation of levitated objects[J]. Nature Communications, 2015, 6: 8661
doi: 10.1038/ncomms9661
[26]   MARZO A, BARNES A, DRINKWATER B W TinyLev: a multi-emitter single-axis acoustic levitator[J]. Review of Scientific Instruments, 2017, 88: 085105
doi: 10.1063/1.4989995
[27]   孙运涛, 陈超 基于近声场的超声悬浮试验[J]. 振动测试与诊断, 2011, 31 (5): 578- 581
SUN Yun-tao, CHEN Chao Experimental study of ultrasonic levitation based on near-sound-field[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31 (5): 578- 581
[28]   马希直, 王胜光, 王挺 近场超声悬浮承载能力及影响因素的理论及实验研究[J]. 中国机械工程, 2013, 24 (20): 2785- 2790
MA Xi-zhi, WANG Sheng-guang, WANG Ting Research on load-carrying capacity of NFUL and its influencing factor[J]. China Mechanical Engineering, 2013, 24 (20): 2785- 2790
doi: 10.3969/j.issn.1004-132X.2013.20.016
[29]   LIU P, LI J, DING H, et al Modeling and experimental study on near-field acoustic levitation by flexural mode[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56 (12): 2679- 2685
doi: 10.1109/TUFFC.2009.1358
[30]   AMANO T, KOIKE Y, NAKAMURA K, et al A multi-transducer near field acoustic levitation system for noncontact transportation of large-sized planar objects[J]. Japanese Journal of Applied Physics, 2000, 39 (5B): 2982- 2985
[31]   REINHART G, HOEPPNER J Non-contact handling using high-intensity ultrasonics[J]. CIRP Annals-Manufacturing Technology, 2000, 49 (1): 5- 8
doi: 10.1016/S0007-8506(07)62884-4
[32]   IDE T, FRIEND J R, NAKAMURA K, et al A low-profile design for the noncontact ultrasonically levitated stage[J]. Japanese Journal of Applied Physics, 2005, 44 (6B): 4662- 4665
doi: 10.1143/JJAP.44.4662
[33]   HASHIMOTO Y, KOIKE Y, UEHA S Transporting objects without contact using flexural traveling waves[J]. The Journal of the Acoustical Society of America, 1998, 103 (6): 3230- 3233
doi: 10.1121/1.423039
[34]   ANDRADE M A, OKINA F T, BERNASSAU A L, et al Acoustic levitation of an object larger than the acoustic wavelength[J]. The Journal of the Acoustical Society of America, 2017, 141 (6): 4148- 4154
doi: 10.1121/1.4984286
[35]   ZENG X, MCGOUGH R J Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach[J]. The Journal of the Acoustical Society of America, 2009, 125 (5): 2967- 2977
doi: 10.1121/1.3097499
[36]   TENGELSEN D R, ANDERSON B E, VILLAMIZAR V, et al Finite-difference simulations of transient radiation from a finite-length pipe[J]. The Journal of the Acoustical Society of America, 2014, 135 (1): 17- 26
doi: 10.1121/1.4835915
[37]   GENGEMBRE N, LHéMERY A Pencil method in elastodynamics: application to ultrasonic field computation[J]. Ultrasonics, 2000, 38 (1–8): 495- 499
doi: 10.1016/S0041-624X(99)00068-2
[38]   LOCKWOOD J, WILLETTE J High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston[J]. The Journal of the Acoustical Society of America, 1973, 53 (3): 735- 741
doi: 10.1121/1.1913385
[39]   马宏伟, 董明, 陈渊, 等 基于矩形换能器空间脉冲响应的相控阵声场研究[J]. 机械工程学报, 2014, 50 (18): 36- 42
MA Hong-wei, DONG Ming, CHEN Yuan, et al Research on acoustic field of ultrasonic linear phased array based on spatial impulse response of rectangular planar transducer[J]. Journal of Mechanical Engineering, 2014, 50 (18): 36- 42
[40]   BRUUS H Acoustofluidics 1: governing equations in microfluidics[J]. Lab on a Chip, 2011, 11 (22): 3742- 3751
doi: 10.1039/c1lc20658c
[41]   BRUUS H Acoustofluidics 2: perturbation theory and ultrasound resonance modes[J]. Lab on a Chip, 2012, 12 (1): 20- 28
doi: 10.1039/C1LC20770A
[42]   UEHA S, HASHIMOTO Y, KOIKE Y Non-contact transportation using near-field acoustic levitation[J]. Ultrasonics, 2000, 38 (1–8): 26- 32
doi: 10.1016/S0041-624X(99)00052-9
[43]   CHU B T, APFEL R E Acoustic radiation pressure produced by a beam of sound[J]. The Journal of the Acoustical Society of America, 1982, 72 (6): 1673- 1687
doi: 10.1121/1.388660
[1] WU Shi-wei, WU Hai-teng, JIN Hao-ran, YANG Ke-ji, WU Er-yong. Frequency-domain synthetic aperture focusing technique for immersion testing using focused transducer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 110-115.
[2] ZHANG Yang, ZHOU Xiao-jun, YANG Chen-long, LI Xiong-bing, ZHENG Hui-feng. Sensitivity compensation method in ultrasonic inspection for
curved components with variable thickness
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 116-121.
[3] HE Qiang, ZHANG Hong-Jian, ZHOU Hong-Liang, et al. Measurement of surface temperature and pressure of thin-walled
vessels based on Rayleigh wave
[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1419-1423.