Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1986-1993    DOI: 10.3785/j.issn.1008-973X.2019.10.016
Civil Engineering     
Spreading characteristics of external smoke for buildings with internal corridor
Xiao-tao ZHANG1,2(),Yu-shi LU2,*(),Kai-hua LU2
1. School of Architectural Economics and Engineering Management, Hubei Business College, Wuhan 430079, China
2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
Download: HTML     PDF(1253KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of external smoke under different fire characteristic parameters was analyzed in order to analyze the spreading characteristics of the external smoke. One building with internal corridor was analyzed through numerical simulation. Results show that the external smoke will re-enter the adjacent floor and result in the significant increase of temperature in fire initial stage. Then the temperature will decrease and unchange due to the decrease of external smoke volume. When the fire scale is small, the fire location has no significant effect on the external smoke. When the fire scale is higher, the influence of fire location has the dangerous area. If the fire location is in the dangerous area, the impact degree of external smoke will significantly increase and the degree of that will decrease if the fire location is out of the dangerous area. The dangerous area is 4.5 m to 6.5 m away from the vent. The critical velocity of wind can be the criterion that determines whether smoke spills out. If the wind velocity is higher than the critical velocity, the smoke will spill out; if not, the smoke will not spill out.



Key wordsbuilding with internal corridor      fire      external smoke      smoke spreading      critical velocity     
Received: 07 August 2018      Published: 30 September 2019
CLC:  X 928  
Corresponding Authors: Yu-shi LU     E-mail: smiletao@163.com;cuglys@foxmail.com
Cite this article:

Xiao-tao ZHANG,Yu-shi LU,Kai-hua LU. Spreading characteristics of external smoke for buildings with internal corridor. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1986-1993.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.016     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1986


内廊式建筑火灾外部烟气蔓延规律

为了探究内廊式建筑火灾外部烟气蔓延规律,以某内廊式建筑为研究背景,通过数值模拟研究不同火源特征参数下外部烟气的形成机理及蔓延规律.研究发现:火灾前期,室内烟气会发生溢出形成外部烟气,在临近上层走廊重新进入室内,导致温度在短时间内显著增大,随后外部烟气逐渐减少,温度逐渐降低并保持稳定;当火灾规模较小时,火源位置变化对外部烟气蔓延的影响不显著,火灾规模较大时,火源位置存在明显的危险区段:火源处于该区段中,外部烟气的影响程度显著增大,在区段外影响程度较低,危险区段为距离通风口4.5~6.5 m;临界风速可以作为判断烟气是否溢出的有效判据,当室外补风气流速度大于临界风速时,烟气发生溢出形成外部烟气,反之则不会形成.


关键词: 内廊式建筑,  火灾,  外部烟气,  烟气蔓延,  临界风速 
Fig.1 Engineering building configuration and scene settings
工况 D/m HRR/MW 工况 D/m HRR/MW
1~5 1.5 2,5,8,10,12 21~25 6.5 2,5,8,10,12
6~10 2.5 2,5,8,10,12 25~30 7.5 2,5,8,10,12
11~15 4.5 2,5,8,10,12 30~35 8.5 2,5,8,10,12
16~20 5.5 2,5,8,10,12 36~40 10.5 2,5,8,10,12
Tab.1 Fire location and heat release rate for calculation
Fig.2 Smoke temperature variations under different mesh size
Fig.3 Comparison of smoke temperature variations between simulation data and experimental data
Fig.4 Spread characteristics of external smoke and temperature changing properties of affected area
Fig.5 Velocity of airflow for vent in fire corridor
Fig.6 Temperature contour for 2 and 3 floors under different case at initial stage of fire
Fig.7 Maximum temperature variation curve with different fire location
Fig.8 Velocity of airflow for vent in fire corridor
Fig.9 Force analysis for smoke near vent area
Fig.10 Variations of actual velocity and critical velocity
[1]   秦霜霜, 吕伟, 余惠琴, 等 基于案例推理的火灾事故相似度及应对措施研究[J]. 安全与环境工程, 2018, 25 (5): 150- 155
QIN Shuang-shuang, LV Wei, YU Hui-qin, et al Similarity and countermeasure of fire accident based on case-based reasoning[J]. Safety and Environmental Engineering, 2018, 25 (5): 150- 155
[2]   LUO N, LI A, GAO R, et al An experiment and simulation of smoke confinement utilizing an air curtain[J]. Safety Science, 2013, 59: 10- 18
doi: 10.1016/j.ssci.2013.04.009
[3]   LI S C, HUANG D F, MENG N, et al Smoke spread velocity along a corridor induced by an adjacent compartment fire with outdoor wind[J]. Applied Thermal Engineering, 2017, 111: 420- 430
doi: 10.1016/j.applthermaleng.2016.09.086
[4]   LI M, GAO Z, JI J, et al Modeling of positive pressure ventilation to prevent smoke spreading in sprinklered high-rise buildings[J]. Fire Safety Journal, 2018, 95: 87- 100
doi: 10.1016/j.firesaf.2017.11.004
[5]   HUANG D F, LI S C An experimental investigation of stratification characteristic of fire smoke in the corridor under the effect of outdoor wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 173- 183
doi: 10.1016/j.jweia.2018.05.021
[6]   CHEN Y, YANG L, FU Z, et al Gas flow behavior and flow transition in elevator shafts considering elevator motion during a building fire[J]. Building Simulation, 2018, 11 (4): 765- 771
doi: 10.1007/s12273-018-0430-3
[7]   CHEN Y, CHEN J, FU Z, et al Gas characteristics and effectiveness of smoke control systems in elevator lobbies during elevator evacuation in a high-rise building fire[J]. Combustion Science and Technology, 2018, 190 (8): 1- 14
[8]   ZHAO W, ZONG R, FAN X, et al Impact of openings on fire properties in the confined corridors[J]. Applied Thermal Engineering, 2017, 110: 746- 757
doi: 10.1016/j.applthermaleng.2016.08.206
[9]   张晓涛, 谭翀, 陆愈实 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报: 工学版, 2016, 50 (9): 1738- 1745
ZHANG Xiao-tao, TAN Chong, LU Yu-shi Influence of traditional smoke control facilities on smoke confinement performance of air curtain[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (9): 1738- 1745
[10]   张晓涛, 吕奎, 陆愈实 冷热气体介质对空气幕阻隔作用的影响[J]. 哈尔滨工程大学学报, 2016, 37 (12): 1677- 1684
ZHANG Xiao-tao, LV Kui, LU Yu-shi Influence of normal and high temperatures on the obstruction efficiency of air curtains[J]. Journal of Harbin Engineering University, 2016, 37 (12): 1677- 1684
[11]   茅靳丰, 余南田, 周进, 等 机械排烟量对防护工程走廊烟气扩散的影响[J]. 工程热物理学报, 2018, 39 (07): 1614- 1620
MAO Jin-feng, YU Nan-tian, ZHOU Jin, et al Effect of mechanical exhaust smoke volume on smoke diffusion in protective engineering corridor[J]. Journal of Engineering Thermophysics, 2018, 39 (07): 1614- 1620
[12]   MCGRATTAN K, FORNEY G. Fire dynamics simulator user’s guide [M]. Gaithersburg: NIST, 2013.
[13]   WU Y, LI A, MA J, et al Numerical studies on smoke natural filling in an underground passage with validation by reduced-scale experiments[J]. Nature Environment and Pollution Technology, 2013, 12 (1): 35- 42
[14]   YU L, BEJI T, LIU F, et al Analysis of FDS 6 simulation results for planar air curtain related flows from straight rectangular ducts[J]. Fire Technology, 2018, 54 (2): 419- 435
doi: 10.1007/s10694-017-0690-y
[15]   潘燕红. 高层建筑消防安全疏散现状问题与对策研究[D]. 广州: 华南理工大学, 2013.
PAN Yan-hong. The high-rise building fire safety evacuation problems and countermeasures [D]. Guangzhou: South China University of Technology, 2013.
[16]   张培红,王增欣. 建筑消防[M]. 北京: 机械工业出版社, 2008.
[17]   ZHANG W, HAMER A, KLASSEN M, et al Turbulence statistics in a fire room model by large eddy simulation[J]. Fire Safety Journal, 2002, 37: 721
doi: 10.1016/S0379-7112(02)00030-9
[18]   JI J, YUAN X, LI K, et al Influence of the external wind on flame shapes of n-heptane pool fires in long passage connected to a shaft[J]. Combustion and Flame, 2015, 162 (5): 2098- 2107
doi: 10.1016/j.combustflame.2015.01.008
[1] Zi-long JI,Jun-zhong JI. Learning effective connectivity network structure based on parallel searching of double firefly populations[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 694-703.
[2] Yao JIN,Wei ZHANG. Real-time fire detection algorithm with Anchor-Free network architecture[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2430-2436.
[3] LIU Xin, LU Zhou-dao, CAI Zi-wei, LI Ling-zhi. Post-fire shear performance of bolted side-plated reinforced concrete beams[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 853-863.
[4] WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng. Meso damage evolution of tunnel lining concrete under fire[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 906-913.
[5] JIANG Xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and bending bearing capacity of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1482-1493.
[6] YANG Hang, ZHENG Cheng hang, JIN Kan, ZHANG Jun, ZHANG Yong xin, WENG Wei guo, WU Xue cheng, GAO Xiang. Analysis on operation cost of SCR system in coal-fired power plant[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 363-369.
[7] ZHANG Xiao tao, TAN Chong,LU Yu shi. Influence of traditional smoke control facilities on smoke confinement performance of air curtain[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1738-1745.
[8] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1516-1520.
[9] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1463-1470.
[10] CUI Jing, YIN Ling feng, GUO Xiao ming, TANG Gan. Inverse presumption method for temperature fields of spatial structure based on residual displacement[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 720-726.
[11] GONG Bin, YU Chun-jiang, WANG Zhun, LUO Zhong-yang. Characteristic of deposits on different heating surfaces from a biomass-fired grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1578-1584.
[12] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 564-570.
[13] LIU Yi-xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 208-217.
[14] LIU Yi xiang, TONG Gen shu, ZHANG Lei. Fire protection thickness of concrete filled fire resistant steel tubular columns[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2387-2396.
[15] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 0-1.