1. College of Agricultural Engineering, Hohai University, Nanjing 210098, China 2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China 3. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China
The Gaussian mutation operator was introduced into the basic artificial bee colony algorithm, and the initial nectar location was optimized in order to verify the feasibility and superiority of radial basis function (RBF) neural network model based on improved artificial bee colony algorithm in groundwater depth prediction. A RBF neural network model was designed based on improved artificial bee colony algorithm (IABC-RBF). The groundwater depth was predicted by inputting the annual rainfall, the amount of annual water intake in the first ditch, the amount of annual field irrigating, the annual groundwater exploitation and the groundwater depth in the previous year of Jinghui irrigation district. The error is very small compared with the measured groundwater depth data. The model was compared with the RBF neural network model and the RBF neural network model based on the basic artificial bee colony algorithm (ABC-RBF). Results show that the RBF neural network model based on the improved artificial bee colony algorithm has faster convergence speed, the least error of the prediction result and the highest accuracy.
Guang-cheng SHAO,Kun ZHANG,Zhi-yu WANG,Xiao-jun WANG,Jia LU. Groundwater depth prediction model based on IABC-RBF neural network. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1323-1330.
Fig.1Dynamic relationship between influence factors and groundwater depth
Fig.2Schematic diagram of radial basis function (RBF) neural network model
Fig.3Optimization process diagram of improved artificial bee colony algorithm
Fig.4Schematic diagram of RBF neural network model
序号
参数
Goal
Spread
MN
1
0.000 862
1.826 070
8
2
0.000 498
2.933 067
10
3
0.000 798
1.688 562
12
4
0.000 789
1.825 936
12
5
0.000 254
1.326 492
11
6
0.000 467
2.526 777
14
7
0.000 207
1.522 293
9
8
0.000 309
1.318 309
8
9
0.000 763
1.383 367
7
10
0.000 168
2.421 241
8
Tab.1Parameter training results of RBF neural network model
Fig.5Comparison of predictive value and measured value of IABC-RBF neural network model
年份
实测值/m
模型
预测值/m
MRE/%
最优
最差
平均
2006
15.59
RBF
?
?
14.97
3.95
2006
15.59
ABC-RBF
15.76
16.07
15.85
1.66
2006
15.59
IABC-RBF
15.74
15.92
15.83
1.51
2007
15.57
RBF
?
?
14.56
6.46
2007
15.57
ABC-RBF
15.73
16.27
16.02
2.91
2007
15.57
IABC-RBF
15.79
16.18
15.97
2.58
2008
15.78
RBF
?
?
15.15
4.01
2008
15.78
ABC-RBF
15.69
15.32
15.55
1.44
2008
15.78
IABC-RBF
15.71
15.42
15.59
1.20
2009
16.21
RBF
?
?
17.19
6.08
2009
16.21
ABC-RBF
16.06
14.97
15.66
3.38
2009
16.21
IABC-RBF
16.06
15.59
15.75
3.04
2010
16.25
RBF
?
?
14.78
9.05
2010
16.25
ABC-RBF
16.25
16.04
16.20
0.68
2010
16.25
IABC-RBF
16.25
16.11
16.25
0.03
Tab.2Comparison of prediction results of three prediction models
Fig.6Average relative error comparison of three models' prediction results
模型
MRE/%
σ/m
RBF模型
5.91
0.992 2
ABC-RBF模型
2.01
0.356 5
IABC-RBF模型
1.67
0.305 9
Tab.3Comparison of average relative error and variance of three model prediction results
Fig.7Best cost of each iteration
[1]
刘东, 付强 三江平原井灌水稻地区地下水动态变化规律的小波神经网络分析[J]. 灌溉排水学报, 2008, 27 (3): 86- 89 LIU Dong, FU Qiang Dynamic variation regularities analysis of groundwater in well irrigation paddy in sanjiang plain based on waveletneural network[J]. Journal of Irrigation and Drainage, 2008, 27 (3): 86- 89
[2]
CHINH L V, HIRAMATSU K, HARADA M Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models[J]. Agricultural Water Management, 2009, 96 (9): 1332- 1338
doi: 10.1016/j.agwat.2009.04.005
[3]
张斌, 刘俊民 基于BP神经网络的地下水动态预测[J]. 水土保持研究, 2012, 19 (5): 235- 237 ZHANG Bin, LIU Jun-min Prediction of groundwater dynamics based on the BP neural network[J]. Research of Soil and Water Conservation, 2012, 19 (5): 235- 237
[4]
曹文洁, 肖长来, 梁秀娟, 等 RBF神经网络在地下水动态预测中的应用[J]. 水利水电技术, 2018, 49 (2): 43- 48 CAO Wen-jie, XIAO Chang-lai, LIANG Xiu-juan, et al Application of RBF neural network for groundwater dynatic prediction[J]. Water Resources and Hydropower Engineering, 2018, 49 (2): 43- 48
doi: 10.3969/j.issn.1672-9900.2018.02.014
[5]
曹邦兴 基于蚁群径向基函数网络的地下水预测模型[J]. 计算机工程与应用, 2010, 46 (2): 224- 226 CAO Bang-xing Prediction model of underground water level that combined ant colony algorithms with RBF network[J]. Computer Engineering and Applications, 2010, 46 (2): 224- 226
doi: 10.3778/j.issn.1002-8331.2010.02.066
[6]
李慧, 周维博, 刘博洋, 等 基于粒子群优化算法的RBF神经网络在泾惠渠灌区地下水位埋深预测中的应用[J]. 水电能源科学, 2014, 32 (8): 127- 130 LI Hui, ZHOU Wei-bo, LIU Bo-yang, et al Groundwater depth prediction model in Jinghui irrigation district of RBF neural network based on particle swarm optimization[J]. Water Resources and Power, 2014, 32 (8): 127- 130
[7]
徐强, 束龙仓, 杨桂莲, 等 基于遗传算法优化的小波神经网络在地下水位预测中的应用[J]. 水文, 2010, 30 (1): 27- 30 XU Qiang, SHU Long-cang, YANG Gui-lian, et al Application of optimized wavelet neuralnetwork based on genetic algorithm in groundwater level prediction[J]. Journal of China Hydrology, 2010, 30 (1): 27- 30
[8]
KARABOGA D. An idea based on honey beeswarm for numerical optimization [R]. Kayseri: Erciyes University, 2005.
[9]
KARABOGA D, BASTURK B On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, (8): 687- 697
[10]
李文莉, 李郁侠, 任平安 基于云变异人工蜂群算法的梯级水库群优化调度[J]. 水力发电学报, 2014, 33 (1): 37- 42 LI Wen-li, LI Yu-xia, REN Ping-an Optimaloperatin of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J]. Journal of Hydroelectric Engineering, 2014, 33 (1): 37- 42
[11]
钱坤, 苏国韶 人工蜂群算法在渠道断面优化设计中的应用[J]. 水利水电科技进展, 2011, 31 (3): 57- 60 QIAN Kun, SU Guo-shao Application of artificial bee colony algorithm to optimizationof channel section[J]. Advances in Science and Technology of Water Resources, 2011, 31 (3): 57- 60
[12]
黄文明, 徐双双, 邓珍荣, 等 改进人工蜂群算法优化RBF神经网络的短时交通流预测[J]. 计算机工程与科学, 2016, 38 (4): 713- 719 HUANG Wen-ming, XU Shuang-shuang, DENG Zhen-rong, et al Short-term traffic flow prediction of optimized RBF neural networks based on the modified ABC algorithm[J]. Computer Engineering and Science, 2016, 38 (4): 713- 719
doi: 10.3969/j.issn.1007-130X.2016.04.015
[13]
苏彩红, 向娜, 陈广义, 等 基于人工蜂群算法与BP神经网络的水质评价模型[J]. 环境工程学报, 2012, 6 (2): 699- 704 SU Cai-hong, XIANG Na, CHEN Guang-yi, et al Water quality evaluation model based on artificial bee colony algorithm and BP neural network[J]. Chinese Journal of Environmental Engineering, 2012, 6 (2): 699- 704
[14]
许贤杰, 周玲, 蒋丹, 等 基于人工蜂群算法计及线路故障的配电网网络重构[J]. 电测与仪表, 2014, 51 (3): 33- 36 XU Xian-jie, ZHOU Ling, JIANG Dan, et al Distribution network reconfiguration based on artificial bee colony algorithm and line fault[J]. Electrical Measurement and Instrumentation, 2014, 51 (3): 33- 36
doi: 10.3969/j.issn.1001-1390.2014.03.008
[15]
刘三阳, 张平, 朱明敏 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29 (1): 123- 128 LIU San-yang, ZHANG Ping, ZHU Ming-min Artificial bee colony algorithm based on local search[J]. Control and Decision, 2014, 29 (1): 123- 128
[16]
罗钧, 李研 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25 (12): 1913- 1916 LUO Jun, LI Yan Artificial bee colony algoithm with chaotic-search strategy[J]. Control and Decision, 2010, 25 (12): 1913- 1916
[17]
暴励, 曾建潮 自适应搜索空间的混沌蜂群算法[J]. 计算机应用研究, 2010, 27 (4): 1330- 1334 BAO LI, ZENG Jian-chao Self-adapting search space chaos-artificial bee colony algorithm[J]. Application Research of Computers, 2010, 27 (4): 1330- 1334
[18]
姜鹏, 刘俊民, 黄一帆, 等 泾惠渠地下水对气候变化和人类活动的响应[J]. 人民黄河, 2014, 36 (5): 45- 47 JIANG Peng, LIU Jun-min, HUANG Yi-fan, et al Groundwater response to climate change and human activities in Jinghuiqu[J]. Yellow River, 2014, 36 (5): 45- 47
[19]
向娜. 基于神经网络和人工蜂群算法的水质评价和预测研究[D]. 广州: 华南理工大学, 2012. XIANG Na. Water quality evaluation and prediction based on neural network and artificial bee colony algorithm [D]. Guangzhou: South China University of Technology, 2012.
[20]
王晓慧, 刘雪英, 白梅花 引入高斯变异和最速下降算子的人口迁移算法[J]. 计算机工程与应用, 2009, 45 (20): 57- 60 WANG Xiao-hui, LIU Xue-ying, BAI Mei-hua Population migration algorithm with Gaussian mutation and the steepest descent operator[J]. Computer Engineering and Applications, 2009, 45 (20): 57- 60
doi: 10.3778/j.issn.1002-8331.2009.20.017
[21]
刘运, 程家兴, 林京 基于高斯变异的人工萤火虫算法在云计算资源调度中的研究[J]. 计算机应用研究, 2015, 32 (3): 834- 837 LIU Yun, CHENG Jia-xing, LIN Jing Study of artificial glowworm algorithm based on Gauss mutation in resource scheduling of cloud computing[J]. Application Research of Computers, 2015, 32 (3): 834- 837
doi: 10.3969/j.issn.1001-3695.2015.03.044
[22]
张京京. 渠井结合灌区地下水位动态对变化环境的响应及调控研究[D]. 杨凌: 西北农林科技大学, 2016. ZHANG Jing-jing. Groundwater dynamic response and regulation under variational environment in canal-well combined irrigation district [D]. Yangling: Northwest A&F University, 2016.