Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1148-1156    DOI: 10.3785/j.issn.1008-973X.2019.06.014
Mechanical and Energy Engineering     
High-speed algorithm for accurate collision detection during particle aggregation
Ya-fei WANG(),Qun-xing HUANG*(),Fei WANG,Yong CHI,Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1519KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional algorithms of collision detection often have poor execution efficiency in dealing with the aggregation following collision of a large number of particles. Therefore, a two-step, fast and accurate algorithm of collision detection was proposed based on the pretreatment of bounding sphere and maximum detection region. In the broad phase, all aggregates were represented by bounding spheres with low update cost. The detection of collisions between bounding spheres was converted into solving the problem of quadratic equations regarding time, and all possible collisions were detected fast by solving these equations parallelly. The detection of collisions outside the maximum detection region was ignored to further reduce execution time. In the narrow phase, the specific time and position of collisions were rapidly determined by discrete collision detection, where sampling time intervals were self-adaptive and decreasing. Simulation results were compared with those by non-optimized traditional algorithms, and it was found that, on the premise of meeting the same accuracy of collision detection the algorithm proposed here could increase the execution efficiency 10 to 30 times, indicating that this algorithm is more applicable to collision detection during the aggregation process of a large number of particles.



Key wordsparticle aggregation      collision detection      bounding sphere      maximum detection region     
Received: 12 November 2018      Published: 22 May 2019
CLC:  TP 391  
Corresponding Authors: Qun-xing HUANG     E-mail: wangyafei@zju.edu.cn;hqx@zju.edu.cn
Cite this article:

Ya-fei WANG,Qun-xing HUANG,Fei WANG,Yong CHI,Jian-hua YAN. High-speed algorithm for accurate collision detection during particle aggregation. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1148-1156.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.014     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1148


颗粒团聚过程准确碰撞检测快速算法

碰撞检测的传统算法在应对大量颗粒碰撞团聚时往往执行效率低下,为此提出一种基于“包围球-最大检测区域”预处理的两步式准确碰撞检测快速算法. 粗略筛选阶段:所有团聚体用更新成本低的包围球替代表示,并将包围球间的碰撞检测转变为求解关于时间的一元二次方程问题,通过并行求解这些方程快速筛选出所有可能发生的碰撞;忽略最大检测区域外的碰撞检测以进一步缩短执行时间. 精细确定阶段:采用离散碰撞检测快速确定碰撞发生的具体时间和位置;在该阶段,采样时间间隔是自适应的且逐渐减小. 将模拟计算结果与未优化的传统算法结果进行对比后发现,在满足相同碰撞检测准确性的前提下,提出的算法将执行效率提升了10~30倍,表明此算法更加适用于大量颗粒团聚过程中的碰撞检测.


关键词: 颗粒团聚,  碰撞检测,  包围球,  最大检测区域 
Fig.1 Schematic diagram of bounding sphere of aggregates
Fig.2 Illustration of elapsed time and remaining time
Fig.3 Structural relation of MCR and MDR
Fig.4 Geometrical relation of two bounding spheres colliding with each other
Fig.5 Collision detection between particles in intersection of two bounding spheres
序号 预处理 主过程
算法 1 DCD (△t自适应且可变)
算法 2 AABB DCD (△t自适应且可变)
算法 3 BS+MDR CCD+DCD (△t自适应且可变)
Tab.1 Technical comparison of two traditional algorithms with new one
Fig.6 Primary soot particle aggregation along centerline of laminar ethylene diffusion flame
Fig.7 Typical TEM images of primary soot particle aggregation along flame centerline and corresponding simulation images
Fig.9 Experimental determination values and simulation values for fractal properties of soot aggregates
Fig.8 Morphological comparison of simulated soot aggregates with real ones captured experimentally
Fig.10 Comparison of simulation values for mean primary particle number per simulated soot aggregate with experimental determination values at different flame heights
Fig.11 Comparison of average execution time and execution efficiency of collision detection using three algorithms
Fig.12 Simulated soot aggregtes using algorithms 1 or 2 when execution times are equal to those of algorithm 3
[1]   KUSAKA Y, FUKASAWA T, ADACHIA Y Cluster-cluster aggregation simulation in a concentrated suspension[J]. Journal of Colloid and Interface Science, 2011, 363: 34- 41
doi: 10.1016/j.jcis.2011.07.024
[2]   WANG Y F, HUANG Q X, WANG F, et al Brownian dynamics simulation of soot primary particle aggregation in laminar ethylene diffusion flames[J]. Physica A, 2019, 514: 936- 947
doi: 10.1016/j.physa.2018.09.119
[3]   张忠辉, 丑武胜 可变形物体间的精确碰撞检测方法研究[J]. 计算机工程与应用, 2009, 45 (1): 176- 178
ZHANG Zhong-hui, CHOU Wu-sheng Research on precise collision detection between deformable objects[J]. Computer Engineering and Applications, 2009, 45 (1): 176- 178
doi: 10.3778/j.issn.1002-8331.2009.01.054
[4]   于瑞云, 赵金龙, 余龙, 等 结合轴对齐包围盒和空间划分的碰撞检测算法[J]. 中国图像图形学报, 2018, 23 (12): 1925- 1937
YU Rui-yun, ZHAO Jin-long, YU Long, et al Collision detection algorithm based on AABB bounding box and space division[J]. Journal of Image and Graphics, 2018, 23 (12): 1925- 1937
[5]   孙劲光, 吴素红 基于空间分割与椭球包围盒的碰撞检测算法[J]. 计算机工程与应用, 2016, 52 (4): 217- 222
SUN Jin-guang, WU Su-hong Collision detection algorithm based on ellipsoid bounding box and spatial decomposition[J]. Computer Engineering and Applications, 2016, 52 (4): 217- 222
doi: 10.3778/j.issn.1002-8331.1405-0105
[6]   李炎, 卢晓军, 贺汉根 USSCD: 一个基于均匀空间分割的快速碰撞检测算法[J]. 中国图像图形学报, 2003, 8 (12): 1444- 1449
LI Yan, LU Xiao-jun, HE Han-gen USSCD: a fast collision detection algorithm based on uniform spatial subdivision[J]. Journal of Image and Graphics, 2003, 8 (12): 1444- 1449
[7]   范昭炜, 万华根, 高曙明 基于图像的快速碰撞检测算法[J]. 计算机辅助设计与图形学报, 2002, 14 (9): 805- 810
FAN Zhao-wei, WAN Hua-gen, GAO Shu-ming A fast collision detection algorithm in image space[J]. Journal of Computer-Aided Design and Computer Graphics, 2002, 14 (9): 805- 810
[8]   邹益胜, 丁国富, 周晓莉, 等 一种基于图像空间的碰撞检测算法[J]. 系统仿真学报, 2011, 23 (5): 944- 949
ZOU Yi-sheng, DING Guo-fu, ZHOU Xiao-li, et al Collision detection algorithm based on image space[J]. Journal of System Simulation, 2011, 23 (5): 944- 949
[9]   FOSS D R, BRADY J F Brownian dynamics simulation of hard-sphere colloidal dispersions[J]. Journal of Rheology, 2002, 44 (3): 629- 651
[10]   BANCHIO A J, BERGENHOLTZ J, NAGELE G Rheology and dynamics of colloidal dispersions[J]. Physical Review Letters, 1999, 82: 1792- 1795
doi: 10.1103/PhysRevLett.82.1792
[11]   CHEN J C, KIM A S Brownian dynamics, molecular dynamics, and Monte Carlo modeling of colloidal systems[J]. Advances in Colloid and Interface Science, 2004, 112: 159- 173
doi: 10.1016/j.cis.2004.10.001
[12]   WATANABE M, TANAKA D Brownian dynamics simulation of the aggregation of submicron particles in static gas[J]. Computers and Chemical Engineering, 2013, 54: 151- 158
doi: 10.1016/j.compchemeng.2013.03.028
[13]   DOPERTCHOUK O. Simple bounding-sphere collision detection [EB/OL]. [2019-02-18]. https://www.gamedev.net/articles/programming/math-and-physics/simple-bounding-sphere-collision-detection-r1234.
[14]   ANDERSON L. Realistic billiards simulation with variable time-step [EB/OL]. [2019-02-18]. https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/final_projects/anderson.pdf.
[15]   黄伟益. 基于GPU并行加速碰撞检测算法的研究 [D]. 重庆: 重庆大学, 2015: 11–29.
HUANG Wei-yi. Research on collision detection algorithm based on GPU parallel speed up [D]. Chongqing: Chongqing University, 2015: 11–29.
[16]   水泳. 虚拟现实中连续碰撞检测算法研究 [D]. 合肥: 中国科学技术大学, 2013: 2–17.
SHUI Yong. Research on continuous collision detection algorithm in virtual reality [D]. Hefei: University of science and technology of China, 2013: 2–17.
[17]   DONER N, LIU F S Impact of morphology on the radiative properties of fractal soot aggregates[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 10- 19
doi: 10.1016/j.jqsrt.2016.09.005
[18]   BOURG D M, BYWALEC B. Physics for game developers [M]. 2nd ed. Sebastopol: O’REILLY, 2013.
[1] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[2] Zhi-jing LI,Jing-hua YE,Hai-bin WU. Robot collision detection with convolution torque observer and friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 427-434.
[3] HE Xue-jun, WANG Jin, LU Guo-dong, LIU Zhen-yu, CHEN Li, JIN Jing. 3D head portrait sculpture by industrial robot based on triangular mesh slicing and collision detection[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1104-1110.
[4] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1115-1121.