Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 455-462    DOI: 10.3785/j.issn.1008-973X.2019.03.006
Mechanical Engineering     
Synergetic decoupling control of transport speed and tension for automated composite tape placement
Wu-yi XIE(),Xiao GAO,Si-yu HE,Xiao-hui XIAO*()
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
Download: HTML     PDF(1293KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Synergistic decoupling control between transport speed and tension for automated composite tape placement was studied based on the requirements of automated composite tape-laying. A nonlinear time-varying two-input and two-output model of the composite prepreg transport system was established based on the self-developed automated tape head. The synergetic decoupling control of transport speed and tension was performed combining with PI (proportional-integral) and diagonal matrix decoupling control algorithm. The tracking experiments of transport speed and tension were carried out in the dynamic simulation environment, and the feasibility of the control algorithm was preliminarily verified. The experiments were carried out on the automated composite tape placement. Results show that the proposed control algorithm can realize the synergistic decoupling control of transport speed and tension, and has strong anti-interference ability. The RMSE of transport speed and tension are 0.008 5 m/s and 0.593 1 N·m, which are 47.9% and 36.2% lower than PI control, respectively. The experimental results validate the effectiveness of the proposed control strategy sufficiently, which can be applied in the real prototype to control the transport speed and tension of tape placement.



Key wordscomposites      automated tape placement      nonlinear time-varying system      decoupling control     
Received: 08 March 2018      Published: 04 March 2019
CLC:  TP 23  
Corresponding Authors: Xiao-hui XIAO     E-mail: 2012301390065@whu.edu.cn;xhxiao@whu.edu.cn
Cite this article:

Wu-yi XIE,Xiao GAO,Si-yu HE,Xiao-hui XIAO. Synergetic decoupling control of transport speed and tension for automated composite tape placement. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 455-462.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/455


面向复合材料自动铺放设备的输带速度与张力协同解耦控制

根据复合材料自动铺带成型的工艺参数要求,研究自动铺带机的输带速度与张力的协同解耦控制. 依据自主研发的铺带头建立预浸带输送系统的非线性时变双输入双输出模型,采用PI控制与对角矩阵解耦控制相结合的控制算法实现输带速度与张力的协同解耦控制. 在动力学仿真环境下进行输带速度与张力的跟踪实验,初步验证控制算法的可行性;在复合材料自动铺带机上进行的控制实验结果表明,提出的控制算法可以实现输带速度与张力的协同解耦控制,且具有较强的抗干扰能力,输带速度跟踪和张力跟踪的均方根误差(RMSE)分别为0.008 5 m/s和0.593 1 N·m,相比于PI控制分别降低了47.9%和36.2%. 实验结果充分验证了所提控制策略的有效性,该控制策略可用于复合材料铺放过程中的输带速度与张力的协同控制.


关键词: 复合材料,  自动铺放机,  非线性时变系统,  解耦控制 
Fig.1 Automated tape placement of composites
Fig.2 Structure of automated tape head
Fig.3 Dynamic analysis of composite prepreg transport system
Fig.4 Diagram of real-time radius calculation of winding wheel using area equivalent algorithm
Fig.5 Block diagram of PI+decoupling control system
序号 参数 符号 单位 取值
1 铺带头移动速度 v0 m/s 0.1
2 空收卷轮半径 R20 m 2×10?2
3 空收卷轮转动惯量 J20 kg·m2 6.5×10?4
4 衬纸密度 ρ2 kg/m3 8×102
5 预浸带宽度 D m 7.5×10?2
6 衬纸厚度 d2 m 5×10?5
7 空放卷轮半径 R10 m 2×10?2
8 满放卷轮半径 R11 m 6×10?2
9 空放卷轮转动惯量 J10 kg·m2 6.5×10?4
10 预浸带密度 ρ1 kg/m3 1.18×103
11 预浸带厚度 d1 m 1×10?4
12 压辊半径 R3 m 3.5×10?2
13 压辊转动惯量 J3 kg·m2 2.42×10?4
14 外力 Fc N 60
15 最大静摩擦力 Fs N 120
16 Stribeck速度 vs m/s 0.1
17 衰减指数 δs ? 2
18 黏性摩擦系数 b N·s/m 20
19 random (t) 的均值 mean N·m 2
Tab.1 Simulation parameters of transport speed tracking and tension tracking
Fig.6 Comparison of transport speed tracking between PI control and PI+decoupling control
Fig.7 Comparison of transport tension tracking between PI control and PI+decoupling control
Fig.8 Comparison of input torque between PI control and PI+decoupling control
控制器 υ/(m·s-1 F/N
RMSE RRMSE RMSE RRMSE
PI控制 0.016 8 47.0% 1.243 0 84.0%
PI+解耦控制 0.008 9 0.198 3
Tab.2 Root mean square error (RMSE) and relative root mean square error (RRMSE) of PI controller and PI+decoupling controller
Fig.9 Control system structure of tape placement
Fig.10 Comparison of transport speed tracking between PI control and PI+decoupling control
Fig.11 Comparison of transport tension tracking between PI control and PI+decoupling control
控制器 υ/(m·s-1 F/N
RMSE RRMSE RMSE RRMSE
PI控制 0.016 3 47.9% 0.930 2 36.2%
PI+解耦控制 0.008 5 0.593 1
Tab.3 RMSE and RRMSE comparison of PI controller and PI+decoupling controller
[1]   文立伟, 肖军, 王显峰, 等 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47 (5): 637- 649
WEN Li-wei, XIAO Jun, WANG Xian-feng, et al Progress of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47 (5): 637- 649
[2]   KHAN M A, MITSCHANG P, SCHLEDJEWSKI R Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process[J]. Journal of Composite Materials, 2013, 47 (4): 485- 499
doi: 10.1177/0021998312441810
[3]   AUGUST Z, OSTRANDER G, MICHASIOW J, et al Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPE Journal, 2014, 50 (2): 30- 37
[4]   KHAN M A, MITSCHANG P, SCHLEDJEWSKI R Identification of some optimal parameters to achieve higher laminate quality through tape placement process[J]. Advances in Polymer Technology, 2010, 29 (2): 98- 111
doi: 10.1002/adv.v29:2
[5]   CHINESTA F, LEYGUE A, BOGNET B, et al First steps towards an advanced simulation of composites manufacturing by automated tape placement[J]. International Journal of Material Forming, 2014, 7 (1): 81- 92
doi: 10.1007/s12289-012-1112-9
[6]   QURESHI Z, SWAIT T, SCAIFE R, et al In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: potential and possibilities[J]. Composites Part B, 2014, 66 (11): 255- 267
[7]   POLINI W, SORRENTINO L Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts[J]. Composites Science and Technology, 2005, 65 (10): 1574- 1581
doi: 10.1016/j.compscitech.2005.01.007
[8]   张建宝. 复合材料自动铺带控制及工艺关键技术研究[D]. 南京: 南京航空航天大学, 2010.
ZHANG Jian-bao. Research on the key control and processing technology of composites automated tape placement [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[9]   朱腾飞, 文立伟, 肖军, 等 预浸带分切卷绕机张力控制研究[J]. 玻璃钢/复合材料, 2016, (5): 17- 22
ZHU Teng-fei, WEN Li-wei, XIAO Jun, et al Research on tension control of carbon fiber prepreg cutting coiling machine[J]. Fiber Reinforced Plastics/Composites, 2016, (5): 17- 22
doi: 10.3969/j.issn.1003-0999.2016.05.003
[10]   韩振宇, 王志斌, 路华, 等 一种新型自动铺丝张力控制系统的研制[J]. 玻璃钢/复合材料, 2014, (5): 4- 8
HAN Zhen-yu, WANG Zhi-bin, LU Hua, et al The development of a new tension control system for automated fiber placement machine[J]. Fiber Reinforced Plastics/Composites, 2014, (5): 4- 8
doi: 10.3969/j.issn.1003-0999.2014.05.001
[11]   申祖武, 徐德帆, 田会方, 等 基于PMAC的多层纤维预浸坯超声波切割机构设计与控制[J]. 玻璃钢/复合材料, 2017, (12):
SHEN Zu-wu, XU De-fang, TIAN Hui-fang, et al Design and control of ultrasonic cutting mechanism for multilayer fiber preprer based on PMAC[J]. Fiber Reinforced Plastics/Composites, 2017, (12):
doi: 10.3969/j.issn.1003-0999.2017.12.011
[12]   田会方, 吴猛 纤维带铺放控制系统的设计研究[J]. 机械工程与自动化, 2008, (2): 135- 137
TIAN Hui-fang, WU Meng Research and design of control system for fiber tape placement[J]. Mechanical Engineering and Automation, 2008, (2): 135- 137
doi: 10.3969/j.issn.1672-6413.2008.02.050
[13]   贺伟, 李廷秋, 李子如 铺层结构对复合材料螺旋桨水动力性能的影响[J]. 华中科技大学学报: 自然科学版, 2015, 43 (12): 71- 75
HE Wei, LI Ting-qiu, LI Zi-ru Influence of laminate structure on the hydrodynamic performance of marine composite propeller[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (12): 71- 75
[14]   谢克明. 现代控制理论[M]. 北京: 清华大学出版社, 2007: 249–252.
[15]   马平, 杨金芳, 崔长春, 等 解耦控制的现状及发展[J]. 控制工程, 2005, 12 (2): 97- 100
MA Ping, YANG Jin-fang, CUI Chang-chun, et al Current situation and development of decoupling control[J]. Control Engineering of China, 2005, 12 (2): 97- 100
doi: 10.3969/j.issn.1671-7848.2005.02.001
[16]   李奇安, 金鑫 对角CARIMA模型多变量广义预测近似解耦控制[J]. 浙江大学学报: 工学版, 2013, 47 (10): 1764- 1769
LI Qi-an, JIN Xin Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (10): 1764- 1769
[17]   赵志诚, 姚亮, 刘志远, 等 双输入双输出时滞过程的IMC-PI控制方法[J]. 华中科技大学学报: 自然科学版, 2013, 41 (9): 53- 56
ZHAO Zhi-cheng, YAO Liang, LIU Zhi-yuan, et al IMC-PI control method of two-input two-output time-delay process[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (9): 53- 56
[18]   FLACCO F. Modeling and control of robots with compliant actuation [D/OL]. Rome: Sapienza University, 2012. goo. gl/soz2RH, 2012.
[19]   向红标, 王收军, 张春秋, 等 Stribeck模型自适应滑模摩擦补偿控制[J]. 中国测试, 2015, 41 (9): 92- 95
XIANG Hong-biao, WANG Shou-jun, ZHANG Chun-qiu, et al Adaptive sliding friction compensation based on stribeck model[J]. China Measurement and Test, 2015, 41 (9): 92- 95
[1] ZHAO Hao-yu, ZHU Chang-sheng. Feedforward decoupling control for magnetically suspended rigid rotor system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1777-1787.
[2] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[3] NI Nan nan, WEN Yue fang, HE De long, WANG Cheng cheng, YI Xiao su, XU Ya hong. Structural damping properties of composites interleaved with  functionalized nonwoven fabrics[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 353-359.
[4] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[5] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1764-1769.
[6] QIAN Zhi-hong, TAO Wei-ming, YANG Xing-wang. Modeling and influences of imperfect interfaces
in multiferroic composites
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 935-940.
[7] LI Hui, LI He, CHANG Kun, CHEN Wei-xiang. Synthesis of Sn/C nanocomposites and their
electrochemical performances as anode materials of Li-ion battery
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 919-922.
[8] WANG Zheng-Ke, HU Qiao-Ling, LV Jia, et al. Chitosan rod reinforced with absorbent cotton fibers[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(7): 1312-1315.