[1] WANG X L, SHRIVASTAVA A, GUPTA A. A-Fast-RCNN:hard positive generation via adversary for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:3039-3048.
[2] BELINKOV Y, GLASS J. Analyzing hidden representations in end-to-end automatic speech recognition systems[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017:2438-2448.
[3] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2013:3111-3119.
[4] HINTON G. Learning distributed representations of concepts[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society. London:Psychology Press, 1986:1-12.
[5] PENG Y T, JIANG H. Leverage financial news to predict stock price movements using word embeddings and deep neural networks[C]//Proceedings of the 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:NAACL, 2016:374-379.
[6] DAHOU A, XIONG S W, ZHOU J W, et al. Word embeddings and convolutional neural network for arabic sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics. New York:ACM, 2016:2418-2427.
[7] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL, 2014:1746-1751.
[8] TURNEY P D. Thumbs up or thumbs down?:semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg:ACL, 2002:417-424.
[9] YU H, HATZIVASSILOGLOU V. Towards answering opinion questions:separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL, 2003:129-136.
[10] WIEBE J, RILOFF E. Creating subjective and objective sentence classifiers from unannotated texts[C]//Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing. Berlin:Spring-Verlag, 2005:486-497.
[11] NAKAGAWA K, INUI K, KUROHASHI S. Dependency tree-based sentiment classification using CRFs with hidden variables[C]//Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:NAACL, 2010:786-794.
[12] SILVA J, COHEUR L, MENDES A. From symbolic to sub-symbolic information in question classification[J]. Artificial Intelligence Review, 2011, 35(2):137-154.
[13] WANG S D, MANNING C. Baselines and bigrams:simple, good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:ACL, 2012:90-94.
[14] SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL, 2013:1631-1642.
[15] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]//Proceedings of the 52nd Annual Meeting on Association for Computational Linguistics. Stroudsburg:ACL, 2014:655-665.
[16] ZHOU C T, SUN C L, LIU Z Y, et al. A C-LSTM neural network for text classification[EB/OL].[2017-11-10]. http://arxiv.org/pdf/1511.08630.pdf.
[17] LUONG M, PHAM H, MANNING C. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL, 2015:1412-1421.
[18] 梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8):1724-1735 LIANG Bin, LIU Quan, XU Jin, et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8):1724-1735
[19] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:NAACL, 2016:1480-1489.
[20] ZHAO Z W, WU Y Z. Attention-based convolutional neural networks for sentence classification[C]//Proceedings of the 2016 Annual Conference of the International Speech Communication Association. Baixas:ISCA, 2016:705-709.
[21] PENNINGTON J, SOCHER R, MANNING C. Glove:glove vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL, 2014:1532-1543.
[22] ZEILER M. Adadelta:an adaptive learning rate method[EB/OL].[2017-11-10]. https://arxiv.org/pdf/1212.5701.pdf.
[23] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Tool for computing continuous distributed representations of words[EB/OL].[2018-04-08]. http://code.google.com/p/word2vec/.
[24] PENNINGTON J, SOCHER R, MANNING C. GloVe:global vectors for word representation[EB/OL].[2018-04-08]. http://nlp.stanford.edu/projects/glove.
[25] SOCHER R, PERELYGIN A, WU J, et al. Sentiment analysis[EB/OL].[2018-04-08]. http://nlp.stanford.edu/sentiment/.
[26] LI X, ROTH D. Experimental data for question classification[EB/OL].[2018-04-08]. http://cogcomp.cs.illinois.edu/Data/QA/QC/.
[27] BOJANOWSKI P, GRAVE E, JOULIN A, et al. Enriching word vectors with subword information[J]. Transactions of the Association for Computational Linguistics, 2017, 5:135-146.
[28] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg:ACL, 2017:427-431.
[29] MIKOLOV T, GRAVE E, BOJANOWSKI P, et al. English word vectors[EB/OL].[2018-04-08]. https://fasttext.cc/docs/en/english-vectors.html.
[30] MIKOLOV T, GRAVE E, BOJANOWSKI P, et al. Advances in pre-training distributed word representations[EB/OL].[2018-03-02]. https://arxiv.org/pdf/1712.09405.pdf. |