Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (2): 307-316    DOI: 10.3785/j.issn.1008-973X.2018.02.013
Civil and Traffic Engineering     
Measurement error due to frequency selection in multi-frequency suspended sediment measurement system
CHEN Xing-yu1, HUANG Shan-he1, He Hao-zhe1,2
1. Ocean College, Zhejiang University, Zhoushan 316021, China;
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Download:   PDF(1668KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A simulation model was built to inverse the sediment concentration and particle size from acoustic backscattering signal, based on the typical sediment concentration and size distribution measured from Yellow River, in order to analyse the feasibility of multi-frequency acoustic measurement and the causes of measurement error due to the frequency selection in high concentration sediment-laden flow. The measurement error and its relationship with measuring frequency were analysed. Results indicate that the inversion error may be reduced if frequency can be properly decided. The particle size is a more important factor than concentration when choosing better frequency for measurement. The relationship of frequencies versus particle size in high concentration and low concentration cases was respectively calculated. Results accord with each other and this paper prefers to use lower frequency in condition of high concentration due to scattering lose.



Received: 10 December 2016      Published: 09 March 2018
CLC:  TP183  
Cite this article:

CHEN Xing-yu, HUANG Shan-he, He Hao-zhe. Measurement error due to frequency selection in multi-frequency suspended sediment measurement system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 307-316.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.02.013     OR     http://www.zjujournals.com/eng/Y2018/V52/I2/307


探测频率对多频声学测沙技术测量误差的影响

为了探究多频声学测沙技术在高泥沙浓度水流中应用的可行性以及探测频率对测量误差的影响,以黄河典型泥沙浓度和粒径剖面数据为基础,应用能量比反演算法,建立反演仿真模型,开展误差分析以及测量误差关于测量频率的敏感性分析.结果显示,声学测沙技术在使用某些与粒径相关的频率测量时,可以明显减少测量误差,具有应用可行性.基于此低误差测量结果,提出优选频率的概念,分析得出,相对浓度而言,优选频率与泥沙粒径的相关性更高.根据是否考虑粒子散射衰减,分别计算出高、低泥沙浓度水流中优选频率与粒径的关系曲线.两组曲线变化趋势一致,但由于粒子散射衰减,高泥沙浓度水流中优选频率整体取值较小.

[1] 王光谦.中国泥沙研究述评[J].水科学进展,1999, 10(3):337-344. WANG Guang-qian.A review on the sediments research in China[J].Advances Water Science, 1999,10(3):337-344.
[2] 孙志林,倪晓静,许丹,等.河口泥沙数学模型的若干问题[J].浙江大学学报:工学版,2015,49(2):232-237. SUN Zhi-lin,NI Xiao-jing,Xu Dan.Some problems on mathematical model of sediment transport in estuary[J].Journal of Zhejiang University:Engineering Science, 2015, 49(2):232-237.
[3] HOLDAWAY G P,THORNE P D,DAVID F,et al.Comparison between ADCP and transmissometer measurements of suspended sediment concentration[J].Continental Shelf Research,1999,19(3):421-441.
[4] RAI A K,KUMAR A.Continuous measurement of suspended sediment concentration:Technological advancement and future outlook[J].Measurement, 2015,76:209-227.
[5] THORNE P D,HURTHER D.An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies[J].Continental Shelf Research,2014,73:97-118.
[6] THORNE P D,HANES D M.A review of acoustic measurement of small-scale sediment processes[J].Continental Shelf Research, 2002,22:602-632.
[7] HAY A E.The remote acoustic detection of suspended sediment at long wavelengths[J].Journal of Ceephysical Research, 1983,88(C12):7525-7545.
[8] HAY A E,SHENG J Y.Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter[J].Journal of Ceephysical Research,1992, 97(C10):15661-15677.
[9] CRAWFORD A M,HAY A E.Determining suspended sand size and concentration from multifrequency acoustic backscatter[J].Journal of the Acoustical Society of America, 1993, 94(6):3312-3324.
[10] SCHAT J.Multifrequency acoustic measurement of concentration and grain size of suspended sand in water[J].Journal of the Acoustical Society of America,1997,101(1):209-217.
[11] THORNE P D,HARDCASTLE P J.Acoustic measurements of suspended sediments in turbulent currents and comparison with in-situ samples[J].Journal of the Acoustical Society of America,1997,101(5):2603-2614.
[12] RICHARDS S D,HEATHERSHAW A D,THORNE P D.The effect of suspended particulate matter on sound attenuation in seawater[J].Journal of the Acoustical Society of America,1996, 100(3):1447-1450.
[13] HURTHER D,THORNE P D.A multi-frequency acoustic concentration and velocity profiler (ACVP) for boundary layer measurements of fine-scale flow and sediment transport processes[J].Coastal Engineering, 2011, 58:594-605.
[14] MOATE B D,THORNE P D.Scattering from suspended sediments having different and mixed mineralogical compositions:comparison of laboratory measurements and theoretical predictions[J].Journal of the Acoustical Society of America,2013,13(33):20-34.
[15] 凌鸿烈,任来法,刘宁华,等.ASSM_Ⅱ 型声学悬浮泥沙观测系统[J].声学技术,1996,15(2):68-72. REN Lai-fa,LIN Hong-lei,LIU Ning-hua..ASSM-Ⅱ Acoustical suspended sediments sbserving system[J].Technical Acoustics, 1996,15(2):68-72.
[16] 张叔英,李允武,声学悬浮泥沙观测系统的研制和应用[J].海洋学报,1998,20(5):114-119. ZHANG Shu-ying,LI Yu-wu,Development and application of acoustic suspended sediment observation system[J].Acta Oceanologica Sinica,1998,20(5):114-119.
[17] 汪亚平,高抒,李坤业.用ADCP进行走航式悬沙浓度测量的初步研究[J].海洋与湖沼,1999,30(6):758-763. WANG Ya-ping,GAO Shu,LI Kun-ye..Preliminary research on the suspended sediment concentration measurement with ADCP[J].Oceanologia et limnologia Sinica, 1999,30(6):758-763.
[18] 尹小玲,张红武,任杰.应用ADP对虎门洪季悬沙浓度的观测研究[J].环境科学与技术,2009,32(6):1-5. YIN Xiao-lin,ZHANG Hong-wu,Ren Jie. Observationin flood season of humen suspended sediment concentration with ADP[J].Environmental Sciences & Techndogy, 2009,32(6):1-5.
[19] THORNE P D,DAVIES F,BOLANOS R. Measurement and modelling of suspended sediment size profiles above sandy rippled beds under waves 21434040@zju.edu.cn[C]//Proceedings of Coastal Sediments.Miami:World Scientific Publishing Co Pte Ltd,2011:1620-1633.
[20] MOATE B D,THORNE P D.Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition[J].Continental Shelf Research,2012,46(1):67-82.
[21] SHEN J Y,HAY A E.An examination of the spherical scatterer approximation in aqueous suspensions of sand[J].Journal of the Acoustical Society of America,1987,83(2):598-600.
[22] THORNE P D,AGRWAL Y C,CACCHIONE D A.A comparison of near-bed acoustic backscatter and laser diffraction measurements of suspended sediments[J]. IEEE Journal of Oceanic Engineering,2007,321(1):225-235.
[23] SOULSBY R L. Dynamics of marine sands:a manual for practical applications[M].London,UK:Thomas Telford publications, 1997.
[24] 中华人民共和国水利部.中国河流泥沙公报[M].北京:中国水利水电出版社,2010. The ministry of water resources of the people's republic of china. The bulletin of river and sediment in china.[M]. Beijing:China Water & Power Press, 2010.
[25] GB/T 50159-2015.河流悬移质泥沙测验规范[S].北京:中国计划出版社,2015. GB/T 50159-2015.Standard for measurement of suspended sediment[S].Beijing:China Planning Press,2015.
[26] 孙维婷,穆兴民,赵广举.黄河干流悬移质泥沙粒径构成变化分析[J].人民黄河,2015,37(5):4-9. SUN Wei-ting,MU Xing-ming,ZHAO Guang-ju.The analysis on the sediments grain size composition of Yellow River mainstream[J].Yellow River, 2015, 37(5):4-9.

[1] WANG Kai, YUE Bo-xuan, FU Jun-wei, LIANG Jun. Image restoration and fault tolerance of stereo SLAM based on generative adversarial net[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 115-125.
[2] GUO Bao-zhen, ZUO Wan-li, WANG Ying. Double CNN sentence classification model with attention mechanism of word embeddings[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1729-1737.