Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Different implementations of bare bones particle swarm optimization
ZHANG Zhen, PAN Zai-ping, PAN Xiao-hong
Faculty of Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(959KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A general bare bones particle swarm optimization (BBPSO) form was presented, which consists of four key elements. In the implementation of BBPSO, whether the different dimensions of a particle use the same random variable or not conduct to two different algorithms. Denote the former as BBPSO-I, and the latter as BBPSO-II. Experimental results indicate that BBPSO-I is a rotational invariant algorithm with poor swarm diversity, while BBPSO-II is rotational variant with better swarm diversity and general performance. The using of Gaussian, Cauchy, Exponential or Uniform distribution makes particles of BBPSO-II tend to move along the axes. These features were clarified by theoretical analysis. Some advice on the application of BBPSO was given. BBPSO-I is suitable for unimodal functions with obvious gradient descent, while BBPSO-II obtains generally better performance, especially on optimizing functions with peaks along axes.



Published: 10 September 2015
CLC:  TP 301  
Cite this article:

ZHANG Zhen, PAN Zai-ping, PAN Xiao-hong. Different implementations of bare bones particle swarm optimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1350-1357.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.07.021     OR     http://www.zjujournals.com/eng/Y2015/V49/I7/1350


骨干粒子群算法两种不同实现的优化特性

总结了骨干粒子群算法(BBPSO)的一般形式, 指出决定BBPSO算法本质的4个要素. BBPSO在实施中, 粒子不同维度采用的随机变量值相同或不同, 这将导致算法的特性及适合的优化对象不同. 记相同的为I型实现, 不同的为II型实现, 通过实验指出2种实现的差别:I型实现有各向同性的优点, 但是粒子多样性差;II型粒子多样性更优, 但各向异性, 使用高斯、柯西、指数和均匀分布形式的II型BBPSO都倾向于沿坐标轴寻解. 从理论上分析了这些差别的成因, 指出I型实现总体性能较差, 只适合优化梯度变化明显的单峰函数; II型实现总体性能较好, 擅长求解峰的方向平行于坐标轴的单峰或多峰函数.

[1] KENNEDY J. Bare bones particle swarms [C]∥ Proceedings of the Swarm Intelligence Symposium. Indiana: IEEE,2003: 80-87.
[2] SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization [C]∥ Conference on Cybernetics and Intelligent Systems. Singapore: IEEE, 2004: 111-116.
[3] SUN J, FANG W, WU X, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection [J]. Evolutionary Computation, 2012, 20(3): 349-393.
[4] FANG W, SUN J, DING Y, et al. A review of quantum-behaved particle swarm optimization [J]. IETE Technical Review, 2010, 27(4): 336-348.
[5] ZHANG H, FERNNDEZ-VARGAS J A, RANGAIAH G P, et al. Evaluation of integrated differential evolution and unified bare-bones particle swarm optimization for phase equilibrium and stability problems [J]. Fluid Phase Equilibria, 2011, 310(1): 129-141.
[6] YAO J, HAN D. Improved barebones particle swarm optimization with neighborhood search and its application on ship design [J]. Mathematical Problems in Engineering, 2013, 2013(1): 113.
[7] RICHER T J, BLACKWELL T. The Lévy particle swarm [C]∥ IEEE Congress on Evolutionary Computation. Vancouver: IEEE, 2006: 808-815.
[8] AL-RIFAIE M M, BLACKWELL T. Bare bones particle swarms with jumps [C]∥Algorithmic Number Theory Symposium.Brussels:Springer, 2012: 49-60.
[9] BLACKWELL T. A study of collapse in bare bones particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372.
[10] HSIEH H, LEE T. A modified algorithm of bare bones particle swarm optimization [J]. International Journal of Computer Science Issues, 2010, 7(6): 12-17.
[11] LI Y, XIANG R, JIAO L, et al. An improved cooperative quantum-behaved particle swarm optimization [J]. Soft Computing, 2012, 16(6): 1061-1069.
[12] ZHANG Y, GONG D, SUN X, et al. Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis [J]. Soft Computing, 2013, 18(7): 116.
[13] ZHANG Y, GONG D, GENG N, et al. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects [J]. Applied Soft Computing, 2014, 5(18): 248-260.
[14] 史丽萍,王攀攀,胡泳军,等. 基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155.
SHI Li-ping, WANG Pan-pan, HU Yong-jun, et al. Broken rotor bar fault diagnosis of induction motors based on bare-bone particle swarm optimization [J]. Transactions of China Electricotechnical Society, 2014, 29(1): 147-155.
[15] CAMPOS M, KROHLING R A. Hierarchical bare bones particle swarm for solving constrained optimization problems [C]∥ IEEE Congress on Evolutionary Computation. Cancun: IEEE, 2013: 805-812.
[16] CHANG Y, CHUEH C, XU Y, et al. Bare bones particle swarm optimization with considering more local best particles [C]∥ International Symposium on Instrumentation and Measurement, Sensor Network and Automation. Toronto : IEEE, 2013: 1105-1108.
[17] SPEARS W M, GREEN D T, SPEARS D F. Biases in particle swarm optimization [J]. International Journal of Swarm Intelligence Research, 2010, 1(2): 34-57.
[18] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.

[1] MAO Yi-yu, LIU Jian-xun, HU Rong, TANG Ming-dong. Collaborative filtering algorithm based on Logistic function and user clustering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1252-1258.
[2] ZHANG Li-Na, YU Yang. Optimization of massive O2O service composition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1259-1268.
[3] DONG Li yan, ZHU Qi, LI Yong li. Model combination algorithm based on consensus maximization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 416-421.
[4] ZHANG Xiao jun, LIU Zhi jing, LI Jie. Adaptive grid method for shock capturing based on image processing technique[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 89-94.
[5] YI Shu ping, LIU Mi, WEN Pei han. Assistant decision method for process planning faced to intelligent manufacturing environment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1911-1921.
[6] GUO Xiao fang, WANG Yu ping, DAI Cai. New hybrid decomposition many-objective evolutionary algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1313-1321.
[7] MIAO Feng, XIE An-huan, WANG Fu-an, YU Feng, ZHOU Hua. Method for multi-stage alternative grouping parallel machines scheduling problem[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 866-872.
[8] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2115-2122.
[9] SI Yuan-jie, GUI Lin, YANG Xiao-hu. Analytical study on model checking with fairness assumptions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1217-1225.
[10] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 2-.
[11] KONG Yong-qi, PAN Zhi-geng. Segmentation algorithm of recessed image based on vector field of suction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1024-1033.
[12] NI Guang-yi, ZHANG Xiao-can, SU Cheng, YU Wei-bin. Count adaptive clustering algorithm based on multiple-chromosome evolution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 980-986.
[13] LIU Jia-hai, YANG Mao-lin, LEI Hang, LIAO Yong. Multicore real-time task allocation algorithms with shared resource constraints[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(1): 113-117.
[14] ZHAO Shi-kui, FANG Shui-liang, GU Xin-jian. Genetic algorithm with new initialization mechanism for flexible job shop scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(6): 1022-1030.
[15] SONG Jie, HOU Hong-ying, WANG Zhi, ZHU Zhi-liang. Improved energy-efficiency measurement model for cloud computing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 44-52.