Please wait a minute...
J4  2013, Vol. 47 Issue (5): 889-894    DOI: 10.3785/j.issn.1008-973X.2013.05.022
    
Influencing factors on ammonia removal by electrochemical oxidation treatment
DING Jing1, SHU Xin2, ZHAO Qing-liang1
1. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental
Engineering, Harbin Institute of Technology, Harbin 150001, China|2. School of Environmental Science,
Liaoning University, Shenyang 110036, China 
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the degradation of low-concentration ammonia in wastewater by electrochemical oxidation, the effect of various operating factors on ammonia and total nitrogen removal were studied. The experimental parameters were anode, cathode material, current density, chloride concentration, electrode gap, initial ammonium concentration and three-dimensional particle. Both the performances of two-dimensional and three-dimensional electrode were discussed. The results show that electrochemical oxidation is suitable to degrade ammonia from wastewater, and the optimum operating parameters are 1 cm electrode gap, 5 mA/cm2 current density, 200 mg/L chloride concentration, RuO2-IrO2-SnO2/Ti as anode, titanium mesh as cathode, and modified zeolite as three-dimensional particle. Under the optimal conditions, 95% of ammonia is removed after 20 minutes' electrochemical oxidation. The synergetic effects of several physical-chemical processes achieve ammonia removal in the three-dimensional system. Compared to two-dimensional system, ammonia removal and current efficiency are higher in three-dimensional system. 



Published: 01 May 2013
CLC:  X 5  
  X 13  
Cite this article:

DING Jing, SHU Xin, ZHAO Qing-liang. Influencing factors on ammonia removal by electrochemical oxidation treatment. J4, 2013, 47(5): 889-894.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.05.022     OR     http://www.zjujournals.com/eng/Y2013/V47/I5/889


电化学氧化法处理氨氮废水的影响因素

为了考查电化学氧化对低浓度废水中氨氮的处理效果,研究阴极材料、阳极材料、电流密度、氯离子质量浓度、极板间距、沸石的添加和氨氮的初始质量浓度等影响因素对氨氮和总氮降解的影响,同时比较研究二维和三维电极对氨氮的去除效果.结果表明,电化学氧化法是一种适宜于废水脱氮的技术,较佳的工艺条件为:极板间距1 cm、电流密度5 mA/cm2、阳极RuO2-IrO2-SnO2/Ti、阴极钛网、氯离子质量浓度200 mg/L、改性沸石为粒子电极,在该条件下反应20 min后氨氮的去除率可达95%.与二维电极对比,三维电极是在多种物理化学过程协同作用下完成对氨氮的去除,可以达到更高的氨氮降解效果和电流效率.

[1] SZPYRKOWICZ L, NAUMCZYK F, ZILIO-GRANDI F. Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes [J]. Water Research, 1995, 29 (2):517-524.
[2] VLYSSIDES A G , KARLIS P K, RORI N, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J]. Journal of Hazardous Materials, 2002, 95(1/2):215-226.
[3] ANGLADA A, URTIAGA A, ORTIZ I, Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes [J]. Environmental Science & Technology, 2009, 43, 2035-2040.
[4] VANLANGENDONCK Y, CORBISIER D, VAN LIERDE A. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants [J]. Water Research, 2005, 39(13):30283034.
[5] XIE Z M., LI X Y, CHAN K Y. Nitrogen removal from the saline sludge liquor by electrochemical denitrification [J]. Water Science and Technology, 2006, 54(8): 171179.
[6] 杨慧敏,何绪文,何咏.电化学氧化法处理微污染水中的氮[J].环境化学,2010,29(3):491-495.
YANG Hui-min, HE Xu-wen, HE Yong. Rmoval of nitrogen in the micro-polluted water by electrochemical oxidation process [J]. Environmental Chemistry, 2010, 29(3):491-495.
[7] LI L, LIU Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics [J]. Journal of Hazardous Materials, 2009,161 (2/3), 1010-1016.
[8] 熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998, 18 (1):5-8.
XIONG Ying-jian, FAN Juan, ZHU Xi-hai. Progress and prospect of research in three-dimension electrode [J]. Industrial water treatment, 1998, 18 (1):58.
[9] RAO N N, ROHIT M, NITIN G, et al. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor [J]. Chemosphere, 2009, 76(9): 12061212.
[10] WU X, YANG X, WU D, et al. Feasibility study of carbon aerogel as particle electrodes for decolorization of RBRZ dye solution in a three-dimensional electrode reactor [J]. Chemical Engineering Journal, 2008, 138: 47-54.
[11] WANG L, FU J, QIAO Q, et al. Kinetic modeling of electrochemical degradation of phenol in a three dimension electrode process [J]. Journal of Hazardous Materials, 2007, 144(1/2): 118-125.
[12] WANG B, KONG W, MA H. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode [J]. Journal of Hazardous Materials, 2007, 146(1/2):295-301.
[13] ZHANG H, LI Y, WU X G, et al. Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor [J]. Waste Management, 2010, 30(11):2096-2102.
[14] APHA. Standard methods for the examination of water and wastewater [S] 19th ed.  Washington, DC: American Public Health Association/ American Water Works Association/Water Environment Federation, 1998.
[15] CHIANG L C, CHANG J E, WEN T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate [J]. Water Research, 1995,29(2):671-678.
[16] 余峰,马香娟,吴祖成.电化学法处理含盐有机废水研究进展[J].水处理技术,2010,36(12):610.
Yu Feng, Ma Xiang-juan,Wu Zu-cheng. Electrochemical treatment of organic wastewater containing salt[J]. Technology of water treatment, 2010,36(12):6-10.
[17] 陈金銮.氨氮的电化学氧化技术及其应用研究[D].北京:清华大学,2008.
CHEN Jin-luan. Study and application of electrochemical oxidation technology for ammonia removal [D].Beijing: Tsinghua Universtity,2008.
[18] ISRAILIDES C J, VLYSSIDES A G, MOURAFETI V N, et al. Olive oil wastewater treatment with the use of an electrolysis system[J]. Bioresource Technology, 1997, 61(2): 163-170.

[1] CHEN Yong-duo, WANG Xiao-chen, LI Ying, ZHU An-na,LIU Zhen, YAN Ke-ping. Decontamination of dimethyl methylphosphonate aqueous solution with Fenton supported by plasma[J]. J4, 2013, 47(12): 2195-2201.
[2] DING Chun-sheng, ZHANG Tao, XU Yang-yang, GONG Fei. Performance study of trichloronitromethane removal in drinking water by Fe reducing[J]. J4, 2013, 47(12): 2202-2207.
[3] ZENG Yu-xuan, SHEN Xin-jun, ZHANG Xu-ming, LIU Zhen, YAN Ke-ping. Experimental study of ionic wind in an electrostatic precipitator[J]. J4, 2013, 47(12): 2208-2211.
[4] HUANG Geng, JIANG Jun-qiu, ZHAO Qing-liang, YU Hang, WANG Kun. Performance of sludge degradation and electricity production accelerated by bioelectrogenesis in sludge anaerobic composting[J]. J4, 2013, 47(5): 883-888.
[5] WANG Lei, WANG Zhong-hua, NING Ping, JIANG Ming, QIN Yang-song. Phosphorus-fixation and sulfur-fixation by using Ca(OH)2/clays sorbent[J]. J4, 2013, 47(5): 874-882.
[6] HUANG Zhen-yu, SUN Yong, CHEN Feng, YANG Wei-juan, CHEN Zhen-chao, ZHOU Jun-hu,. Experimental research on SNCR applied in 125 MW
power plant boiler
[J]. J4, 2012, 46(10): 1778-1783.
[7] WANG Hai-tao, YANG Wei-juan, ZHOU Jun-hu, WANG Zhi-hua, LIU Jian-zhong,CEN Ke-fa. Calculation and analysis on evaporation and mixing characteristics
of droplets in high temperature flue
[J]. J4, 2011, 45(5): 878-884.
[8] MENG Ya-feng, WANG Da-hui. Effect of reduction degradation by organic matter[J]. J4, 2010, 44(12): 2406-2410.
[9] HE Qing, ZHOU Jin-Song, SHU Yan-Qun, JIA Zhong-Yang, NI Meng-Jiang, CEN Ge-Fa. Effect of vanadiumbased selective catalytic reduction catalysts
on mercury speciation transformation
[J]. J4, 2010, 44(9): 1773-1780.
[10] JIN Han-Hui, LI Qing-Beng, CHEN Li-Hua, FAN Jian-Ren, LV Lin. Experimental study on distribution and transport of
indoor aerosol particles
[J]. J4, 2010, 44(9): 1793-1797.
[11] JU Hua-Quan, XU Xin-Hua, SHI Hui-Xiang, HONG Da-Hui. Microwave decomposition of 2, 4dichlorophenol adsorbed on
GACsupported copper and iron catalysts
[J]. J4, 2010, 44(3): 606-611.
[12] LV Hong-Kun, YANG Wei-Juan, ZHOU Dun-Hu, et al. Experimental research on SNCR applied in power plant boiler: impact of temperature and urea solution injection volume flow rate[J]. J4, 2009, 43(09): 1655-1660.