Please wait a minute...
J4  2013, Vol. 47 Issue (2): 293-299    DOI: 10.3785/j.issn.1008-973X.2013.02.016
    
Experimental Result of condensation in micro-fin tubes of
different geometries
WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 An experimental investigation was performed with R22 and R410A for single-phase flow and condensation inside seven micro-fin tubes with the same outer diameter 5 mm and helix angle 18° to obtain pressure drop and heat transfer coefficient characteristics of tubes with different apex angle α. Data are for mass fluxes at 200~650 kg/(m2·s). The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0.1, respectively. The results suggest a positive correlation between surface heat-transfer area ratio and heat exchange enhancement ratio. When R22 is used, Tube 1 has the relatively high heat transfer coefficient and relatively low pressure drop, the same as tube 7 when R410A is used. In addition, Pressure drop correlations for plain tubes were applied to micro-fin tubes by using a friction factor calculated by the Churchill model[27] and a suitable relative roughness. The Kedzierski and Goncalves correlation[11]has been modified to be based on the nominal heat transfer area adopting the fin root diameter instead of the actual inner surface heat transfer area, which can predict all data points within a ± 20% error band.



Published: 01 February 2013
CLC:  TK 124  
Cite this article:

WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua. Experimental Result of condensation in micro-fin tubes of
different geometries. J4, 2013, 47(2): 293-299.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.02.016     OR     http://www.zjujournals.com/eng/Y2013/V47/I2/293


微小内螺纹管冷凝实验结果及关联式评价

为了研究不同顶角的内螺纹管单相及冷凝的压降及换热性质,对具有相同外径(5 mm)、相同螺旋角(18°)的内螺纹管进行实验,使用制冷剂为R22和R410A,质量流速为200~650 kg/(m2·s),饱和温度为320 K,进出口干度分别为0.8和0.1.结果表明,内部实际换热面积增加比Aai/Afr是和强化换热系数直接正相关的.其中R22为工质的1#管和R410A为工质的7#管具有相对高的换热系数和相对低的压降.且在计算压降时,应用了Churchill模型[27]得出的摩擦系数及一个合适的相对粗糙度来修正光管的压降关联式.对Kedzierski和Goncalves关联式[11]进行修正,用基于齿根直径的换热面积代替实际内部换热面积,使误差在20%以内.
关键词:

[1] 黄理浩,陶乐仁,郑志皋,等.R410A在管内冷凝换热及压降的实验研究[J].制冷技术,2011,39(4): 31-34.
HUANG Li-hao, TAO Le-ren, ZHENG Zhi-gao, et al, Experimental study on condensation heat transfer and pressure drop in internally thread enhanced tube with R410A [J].Refrigeration Technology, 2011, 39(4): 31-34.
[2] 张建国,陶乐仁,王伟,等.R22和R410A在水平微肋管内冷凝性能的实验研究[J].制冷与空调.2010, (2): 10-13.
ZHANG Jianguo, TAO Leren, WANG Wei, et al, Experimental study on condensation heat transfer performance of horizontal microfin tube with R22 and R410A [J]. Refrigeration & Air Conditioning, 2010, (2): 10-13.
[3] THOME J R. Engineering Data Book Ⅲ[M]. Lausanne: Wolverine Tube, Inc., 2004: 567-603.
[4] YANG C Y. A critical review of condensation heat transfer predicting modelseffect of surfacetension force [J]. Journal of Enhanced Heat Transfer, 1999, 6(2/4): 217-236.
[5] CAVALLINI A, DEL COL D, DORETTI L, et al, Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes [J]. International Journal of Refrigeration, 2000, 1 (23): 4-25.
[6] WEBB R L, KIM N H. Principles of Enhanced Heat Transfer [M]. 2nd ed. New York: Taylor & Francis Group, 2004: 234-243.
[7] SCHLAGER L M, PATE M B, BERGLES A E. Evaporation and condensation heat transfer and pressure drop in horizontal 12.7mm microfin tubes with refrigerant 22[J]. Journal of Heat Transfer, 1990, 112(4): 1041-1047.
[8] WU X M, WANG X L, WANG W C. Condensation heat transfer and pressure drop of R22 in 5-mm diameter microfin tubes [J]. Journal of Enhanced Heat Transfer, 2004,11: 275-282.
[9] CAVALLINI A, BELLA B, LONGO G A, et al, Experimental heat transfer coefficients during condensation of halogenated refrigerants on enhanced tubes [J]. Journal of Enhanced Heat Transfer, 1995,(2): 115-125.
[10] CHOI J Y, KEDZIERSKI M A, DOMANSKI P A, Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes [C]∥Proceedings of IIF-IIR Commission. B1: Paderborn, Germany: B4, 2001: 9-16.
[11] KEDZIERSKI M A, GONCALVES J M. Horizontal convective condensation of alternative refrigerants within a microfin tube [J]. Journal of Enhanced Heat Transfer, 1999, 6: 161-178.
[12] HUANG X C, DING G L, HU H T, et al, Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes [J]. Experimental Thermal and Fluid Science, 2010, 34(7): 845-856.
[13] DING G L, HU H T, HUANG X C, et al, Experimental investigation and correlation of twophase frictional pressure drop of R410Aoil mixture flow boiling in a 5 mm microfin tube [J]. International Journal of Refrigeration, 2009, 32(1): 150-161.
[14] LI W, WU Z. A general criterion for evaporative heat transfer in micro/mini-channels [J].International Journal of Heat and Mass Transfer, 2012, 53(9/10): 19671976.
[15] LI W, WU Z. A general correlation for adiabatic two-phase pressure drop in micro/mini-channels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2732-2739.
[16] LI W, WU Z. A general correlation for evaporative heat transfer in micro/minichannels [J]. International Journal of Heat and Mass Transfer, 2010, 53: 1778-1787.
[17] GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow [J]. International Chemical Engineering, 1976, 16: 359-368.
[18] PETUKHOV B S. Heat transfer and friction in turbulent pipe flow with variable physical properties [J], Advances in Heat Transfer, 1970, 6: 503-564.
[19] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[20] 王旭,吴赞,李冠球,等.不同5 mm内螺纹管的蒸发实验研究及传热和压降关联式的评价[C]∥工程热物理年会. 西安:工程热物理学会. 2011, 745-750.
Wang Xu, WU Zan, LI Guan-qiu, et al. Experimental investigation of condensation in micro-fin tubes of different geometries [C]∥Annual Conference of Engineering Thermophysics. Xi’an: Chinese Society of Engineering Thermophysics. 2011,745-750.
[21] RAVIGURURAJAN T S, BERGLES A E. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes [J]. Augmentation of Heat Transfer in Energy Systems, ASME HTD, 1985, 52: 9-20.
[22] HARAGUCHI H, KOYAMA S, ESAKI J, et al, Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal micro-fin tube [C]∥ Proceedings of 30th National Symp.  Yokohama, Japan: \
[s.n.\] 1993, 343-345.
[23] FRIEDEL L. Improved friction pressure drop correlations for horizontal and vertical twophase pipe flow[C]∥ in: European TwoPhase Flow Group Meeting. Ispra, Italy: \
[s.n.\], 1979, paper E2.
[24] MULLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow pipes [J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308.
[25] GRONNERUD R. Investigation of liquid holdup, flow-resistance and heat transfer in circulation type evaporators, part VI: twophase flow resistance in boiling refrigerants [M]. Bull. de I’ Inst. du Froid, 1979, 255-267.
[26] BEATTIE D H, WHALLEY P B. Simple two-phase frictional pressure drop calculation method [J], International Journal of Multiphase Flow, 1982, (8): 83-87.
[27] CHURCHILL S W. Friction factor equation spans all fluid flow regimes [J]. Chemical Engineering, 1977, 84(24): 91-92.
[28] CAVALLINI A, DEL COL D, DORETTI L, et al. A new computational procedure for heat transfer and pressure drop during refrigerant condensation inside enhanced tubes [J]. Journal of Enhanced Heat Transfer, 1999, 6(6): 441-456.
[29] MOSER K, WEBB R L, NA B. A new equivalent Reynolds number model for condensation in smooth tubes[J]. International Journal of Heat Transfer, 1998, 120(2): 410-417.
[30] SHAH M M. A general correlation for heat transfer during film condensation inside pipes [J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556.

[1] WANG Chao, DONG Fei-ying, FAN Li-wu, YU Zi-tao, HU Ya-cai. Experimental study of heat and mass transfer of saltwater cooling tower[J]. J4, 2014, 48(4): 666-670.
[2] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink[J]. J4, 2013, 47(9): 1644-1649.
[3] ZENG Yi, HONG Rong-hua, FAN Li-wu, XU Xu,YU Zi-tao, HU Ya-cai. Natural convection of a heat-generating fluid around a horizontal porous percolating circular cylinder[J]. J4, 2013, 47(8): 1463-1469.
[4] HUANG Chen,CHENG Le-ming,ZHOU Xing-long,WU Chao-gang,ZHOU Qi, FANG Meng-xiang,. Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace
[J]. J4, 2012, 46(11): 2128-2132.
[5] LI Hong-xia, LI Guan-qiu, LI Wei. Analysis of in tubes particulate fouling characteristic[J]. J4, 2012, 46(9): 1671-1677.
[6] CHEN Wei, QU Li-juan, WANG Chao, YU Zi-tao, WANG Jing-hua. An experimental investigation of the performance of an air-source heat
pump hot-water system based on saltwater energy towers
[J]. J4, 2012, 46(8): 1485-1489.
[7] ZHENG Cheng-Hang, CHENG Le-Ming, LI Chao, JIA Zhong-Yang, NI Meng-Jiang, CEN Ge-Fa. Numerical simulation   of low calorific gas combustion and
heat transfer in porous media
[J]. J4, 2010, 44(8): 1567-1572.