[1] WORKMAN J, WEYWR L. Practical guide to interpretive nearinfrared spectroscopy [M]. Boca Raton: CRC Press, 2008: 94-96.
[2] 陆婉珍主编. 现代近红外光谱分析技术[M]. 2版. 北京:中国石化出版社,2006: 59-86.
[3] JAIN A K, DUIN R P W, MAO J C. Statistical pattern recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
[4] BALABIN R M, SAFIEVA R Z, LOMAKINA E I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques [J]. Analytica Chimica Acta, 2010, 671(1/2): 27-35.
[5] GALTIER O, ABBAS O, LE DREAU Y. Comparison of PLS1DA, PLS2DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions [J]. Vibrational Spectroscopy, 2011, 55(1): 132140.
[6] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300.
[7] BARKER M, RAYENS W. Partial least squares for discrimination [J]. Journal of Chemometrics, 2003(3), 17: 166-173.
[8] SYLVIE C, DOMINIQUE B, ACHIM K, et al. Application of PLSDA in multivariate image analysis [J]. Journal of Chemometrics, 2006, 20(5): 221-229.
[9] DE PEINDERA P, VREDENBREGTB M J, VISSERC T, et al. Detection of lipitor counterfeits: A comparison of NIR and raman spectroscopy in combination with chemometrics [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(4/5): 688-694.
[10] 杨忠, 任海青, 江泽慧. PLSDA法判别分析木材生物腐朽的研究[J]. 光谱学与光谱分析, 2008, 28(4): 793-796.
YANG Zhong, REN Haiqing, JIANG Zehui. Discrimination of wood biological decay by NIR and partial least squares discriminant analysis (PLSDA) [J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 793-796.
[11] KUANG J C, LUO X, WANG Z, et al. A PLSSVM model for reservoir identification in natural gas exploration [C]∥ Proceedings of the 6th International Conference on Partial Least Squares and Related Methods. Beijing: Publishing House Electronics Industry, 2009: 84-92.
[12] 吕建峰, 戴连奎. 偏最小二乘支持向量机(PLSSVM)在光谱定量分析中的应用[C]∥ 第六届全球智能控制与自动化大会. 大连: IEEE, 2006: 5228-5232.
LV Jianfeng, DAI Liankui. Application of partial least squares support vector machines (PLSSVM) in spectroscopy quantitative analysis [C]∥ Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian: IEEE, 2006: 5228-5232.
[13] 朱远平, 戴汝为. 基于SVM决策树的文本分类器[M]. 模式识别与人工智能, 2005, 18(4): 412-416.
ZHU Yuanping, DAI Ruwei. Text classifier based on SVM decision tree [J]. Pattern Recognition and Artificial Intelligence, 2005, 18(4): 412-416.
[14] SUYKENS J A K, VANDEWALLE J, DE MOOR B. Optimal control by least squares support vector machines [J]. Neural Networks, 2001, 14(1): 23-35.
[15] 许禄, 邵学广. 化学计量学方法[M]. 北京: 科学出版社, 2004: 90-92.
[16] XU Q S, LIANG Y Z. Monte Carlo cross validation [J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56(1): 1-11. |