Please wait a minute...
J4  2012, Vol. 46 Issue (5): 818-823    DOI: 10.3785/j.issn.1008-973X.2012.05.007
    
Study on  adsorption of Fe(II) and Mn(II) in aqueous
by titanate nanowires
CHEN Xin-feng, SHAO Wei-yun, YE Miao-miao
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Titanate nanowires have been synthesized via a simple hydrothermal method by using tetrabutyl titanate as the titanium source. The asprepared products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The adsorption capacity of Fe(II) and Mn(II) in aqueous by titanate nanowires was tested in a static system. Results show that titanate nanowires have a diameter of about 50~400 nm and a length up to a few micrometers. The adsorption capacities of Fe(II) and Mn(II) by titanate nanowires in aqueous at 25 ℃, pH 6.68 are 39.89 and 34.67 mg/g, respectively. The equilibrium adsorption data for tianate nanowires are fitted to Freundlich isotherm. The adsorption kinetics are well described by the Lagergren first-order equation. In addition, the removal rates of Fe(II) and Mn(II) increase with the increasing of the solution pH value and the dosage of titanate nanowires .



Published: 01 May 2012
CLC:  X 131.2  
Cite this article:

CHEN Xin-feng, SHAO Wei-yun, YE Miao-miao. Study on  adsorption of Fe(II) and Mn(II) in aqueous
by titanate nanowires. J4, 2012, 46(5): 818-823.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.05.007     OR     http://www.zjujournals.com/eng/Y2012/V46/I5/818


钛酸盐纳米线对水中Fe(II)和Mn(II)的吸附

以钛酸四丁酯为钛源,采用水热法制备钛酸盐纳米线.利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对钛酸盐纳米线的物化性能进行表征.通过对水中Fe(II)和Mn(II)的静态吸附试验,考察钛酸盐纳米线的吸附活性.结果表明,水热法制备的钛酸盐纳米线直径分布在50~400 nm,长度可达几微米甚至几十微米.在温度为25 ℃、溶液pH为6.68的条件下,钛酸盐纳米线对水中Fe(II)和Mn(II)的饱和吸附量分别达到39.89和34.67 mg/g,吸附过程较好地符合Freundlich吸附等温线.采用Lagergren一级吸附动力学模型能够较好地描述钛酸盐纳米线的吸附动力学.此外,在本实验条件下,钛酸盐纳米线对水中Fe(II)和Mn(II)的吸附去除率随溶液pH值及吸附剂投加量的增大而增大.

[1] 薛罡,赵洪宾.地下水除铁除锰技术新进展[J].给水排水, 2002, 28(7):26-28.
XUE Gang, ZHAO Hongbin. The new development of technology about removal of iron and manganese from groundwater[J]. Water and Wastewater Engineering, 2002, 28(7):26-28.
[2] 姜义,张吉库.地下水中铁、锰的存在形式及去除技术探讨[J].环境保护科学, 2003, 29(115):32-34.
JIANG Yi, ZHANG Jiku. Research on the form of Fe and Mn in underground water and removal technology [J]. Environment Protection Science, 2003,29(115):32-34.
[3] PACINI V A, INGALLINELLA A M, SANGUINETTI G. Removal of iron and manganese using biological roughing up flow filtration technology[J].Water Research,2005,39.(18):4463-4475.
[4] KNOCKE W R, VAN BENSCHOTEN J E, KEARNEY M J, et al. Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide[J].Journal American Water Works Association,1991,83(6):80-87.
[5] 赵良元,胡波,朱迟,等.Na型斜发沸石去除水中铁锰及其再生方法研究[J].环境科学与管理,2008,33(1):65-69.
ZHAO Liangyuan, HU Bo, ZHU Chi, et al. Removal of Fe(II) and Mn(II) in drinking water by Naclinoptilolite and establishment of regeneration method [J].Environmental Science and Management, 2008,33(1):65-69.
[6] 赵玉华,常启雷,李妍.NaOH改性沸石吸附地下水中铁锰效能研究[J].辽宁化工,2009,38(12):857-860.
ZHAO Yuhua, CHANG Qilei, LI Yan. Study on removing iron and manganese in ground water with zeolite modified by NaOH[J]. Liaoning Chemiccal Industry, 2009, 38(12):857-860.
[7] JUSOH A B, CHENG W H, LOW W M, et al. Study on the removal of iron and manganese in groundwater by granular activated carbon [J].Desalination,2005,182(1/3):347-353.
[8] SHARMA Y C, UMA, SINGH S N, et al. Fly ash for the removal of Mn(Ⅱ) from aqueous solutions and waste waters[J]. Chemical Engineering Journal, 2007, 132(1/3):319-323.
[9] RAUf N, TAHIR S S. Thermodynamics of Fe(Ⅱ) and Mn(Ⅱ) adsorption onto bentonite from aqueous solutions [J]. Chem.Thermodynamics, 2000, 32(5):651-658.
[10] SAFAEI M, RASHIDZADEH M, SARRAFMAMOORY R, et al. Synthesis and characterization of oneDimensional titanate manostructures via an alkaline hydrothermal method of a low surface area TiO2Anatase[J].Ceramic Processing Research, 2010,11(2):277-280.
[11] HAFEZ H S. Synthesis of highlyactive singlecrystalline TiO2 nanorods and its application in environmental photocatalysis [J].Materials Letters,2009,63(17):1471-1474.
[12] WEI Mingdeng, KONISHI Y, Zhou Haoshen, et al. Utilization of titanate manotubes as an electrode material in dyesensitized solar cells [J]. The Electrochemical Society, 2006,153(6):1232-1236.
[13] YANG Dongjiang, ZHENG Zhanfeng, Liu Hongwei, et al. Layered titanate nanfibers as Efficient adsorbents for removal of toxic radioactive and heavy metal ions from water[J].J.Rhys.Chem, 2008,112(42):16275-16280.
[14] YU Y X, XU D S, Singlecrystalline TiO2 nanorods: Highly active and easily recycled photocatalysts\
[J\]. Appl Catal B: Environ, 2007, 73(1/2):166-171.
[15] CARDOSO V A, SOUZA A G, SARTORATTO P C, et al. The ionic exchange process of cobalt, nickel and copper(Ⅱ) in alkaline and acidlayered titanates[J]. Colloids and surfaces,2004,248(1/3):145-149.

[1] ZENG Chao, YU Ting-chao, WANG Xiao-hui, ZHANG Li-juan. Adsorption of Sb(Ⅲ) in aqueous by MnO2-modified carbon nanotubes[J]. J4, 2013, 47(11): 1951-1957.
[2] WANG Xiao-hui, YU Ting-chao, LI Cong, YE Miao-miao. The adsorption of Sb(Ⅲ) in aqueous by KMnO4-modified
activated carbon
[J]. J4, 2012, 46(11): 2028-2034.