Please wait a minute...
J4  2011, Vol. 45 Issue (12): 2259-2264    DOI: 10.3785/j.issn.1008-973X.2011.12.029
    
Power allocation and subcarrier pairing for AF-OFDM
based cognitive radio systems
ZHANG Cui-zhi1, CHEN Shu-min2, YU Qiang1, LIANG Shu-cheng1, XU Yuan-xin1
1. Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China;
2. Faculty of Informatics and Electronics, Zhejiang Scitech University, Hangzhou 310018, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An OFDM based cognitive radio(CR) system with amplify-and-forward relay was established. Optimal subcarrier pairing and power allocation algorithms for the system were investigated, while the total power of CR user was under the constraint and the interference introduced to the primary user remained within a tolerable range. The Lagrange dual method and subgradient method were employed to design the optimal power allocation algorithm, and the HopcroftKarp algorithm for subcarrier pairing was studied with power allocation algorithm. Besides, a suboptimal power allocation algorithm with regard to total system power and interference constraint was proposed, which has low computational complexity. Then the optimal power allocation algorithm was compared with the suboptimal power allocation algorithm, and the HopcroftKarp subcarrier pairing algorithm was compared with the fixed subcarrier pairing algorithm, which indicates that the signal transmitted by the source on one subcarrier is forwarded on the same subcarrier by a relay to the destination. Finally, simulation results verify the optimization of combining power allocation with subcarrier pairing can effectively improve the system spectrum efficiency, and is feasible for practical system.



Published: 01 December 2011
CLC:  TN 92  
Cite this article:

ZHANG Cui-zhi, CHEN Shu-min, YU Qiang, LIANG Shu-cheng, XU Yuan-xin. Power allocation and subcarrier pairing for AF-OFDM
based cognitive radio systems. J4, 2011, 45(12): 2259-2264.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.12.029     OR     https://www.zjujournals.com/eng/Y2011/V45/I12/2259


基于AF中继的OFDM认知系统的
功率分配和子载波配对算法

建立基于放大转发(AF)中继的正交频分复用(OFDM)的认知无线电系统模型,并推导出该系统中在对从用户的源节点和中继节点的总功率限制和对主用户的干扰限制条件下的联合最优功率分配和子载波配对算法.采用拉格朗日对偶分解法和次梯度法推导出最优功率分配算法,并将基于Hopcroft-Karp算法的子载波配对方法融合到功率分配的过程中,得到联合最优算法.根据系统总功率和干扰限制的特点,提出一种低复杂度的次优功率预分配算法.分别对最优功率分配算法和次优功率分配算法、Hopcroft-Karp子载波配对算法和源节点、中继节点采用相同子载波传输的固定子载波配对算法进行仿真比较.结果表明:采用功率分配和子载波配对的联合优化技术能够大大提高系统的频谱效率,具有一定的可行性.

[1] HAYKIN S. Cognitive radio: brainempowered wirelesscommunications[J]. IEEE Journal on Selected Areas in Communications,2005, 23(2): 201-220.
[2] WEISS T, HILLENBRAND J, KROHN A, et al. Mutual interference in OFDMbased spectrum pooling systems[C]∥ Proceedings of the 59th IEEE Vehicular Technology Conference. Milan: IEEE, 2004: 1873-1877.
[3] BANSAL G, HOSSAIN M J, BHARGAVA V K. Optimal and suboptimal power allocation for OFDMbased cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4710-4718.
[4] ZHANG Y H, CYRIL L. Resource allocation in an OFDMbased cognitive radio system[J]. IEEE Transactions on Communications, 2009, 57(7): 1928-1931.
[5] 彭木根,王文博.协同无线通信原理与应用[M].北京:机械工业出版社,2008: 44-53.
[6] MUSAVIAN L, AISSA S, LAMBOTHARAN S, Effective capacity for interference and delay constrained cognitive radio relay channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(5): 1698-1707.
[7] YIN R, ZHANG Y, YU G D, et al. Centralized and distributed resource allocation in OFDM based multirelay system[J]. Journal of Zhejiang UniversitySCIENCE C (Computers & Electronics), 2010, 11(6): 450-464.
[8] SHEN Z H, WANG X X, ZHANG H T. Power allocation and subcarrier pairing for OFDMbased AF cooperative diversity systems[C]∥ Proceedings of the 69th IEEE Vehicular Technology Conference. Barcelona: IEEE, 2009: 1-5.
[9] 周明宇,李立华,张平,等.两跳OFDMAF接力系统中的子载波配对技术[J].北京邮电大学学报,2008,31(1): 135-139.
ZHOU Mingyu, LI Lihua, ZHANG Ping, et al. Subcarrier pairing for two hops OFDMAF relay systems[J].Journal of Beijing University of Post and Telecommunications, 2008, 31(1): 135-139.
[10] YONG L, WANG W B, KONG J, et al. Power allocation and subcarrier pairing in OFDMbased relaying networks[C]∥ Proceedings of IEEE International Conference on Communications. Beijing: IEEE, 2008: 2602-2606.
[11] YU W, LUI R. Dual methods for nonconvex spectrum optimization of multicarrier systems[J]. IEEE Transactions on Communications, 2006, 54(7): 1310-1322.
[12] BOYD S, XIAO L, MUTAPCIC A. Subgradient methods [EB/OL]. [2007-01-23]. http: ∥www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf.

[1] DONG Li-da, HUANG Cong , GUAN Lin-bo. Double-tree structure based scheduling strategy for wireless HART[J]. J4, 2014, 48(3): 391-397.
[2] GONG Ben-kang, ZHANG Zhao-yang, YE Lu. Overlapped OFDMA:a novel spectrum sharing scheme[J]. J4, 2013, 47(5): 860-866.
[3] LOU Wen-tao, ZHANG Zhao-yang, CHEN Shao-lei, YIN Rui. Energy allocation in rateless coded cognitive radio system[J]. J4, 2012, 46(10): 1816-1821.
[4] ZHOU Gao-bei, SONG Hong-jun, DENG Yun-kai. Investigation of SAR array antenna beam broadening
based on beam pattern space
[J]. J4, 2011, 45(12): 2252-2258.
[5] CHEN Hong. Hardware circuits design of RF synchronized switch[J]. J4, 2011, 45(2): 330-334.