Please wait a minute...
J4  2011, Vol. 45 Issue (11): 2008-2013    DOI: 10.3785/j.issn.1008-973X.2011.11.020
    
Thermodynamic performance analysis of associated energy
combined cycle system in ironmaking process
YAO Hua1, SHENG De-ren1, LIN Zhang-xin2, SONG Si-yuan2,
CHEN Jian-hong1, LI Wei1
1.Institute of Thermal Science and Power System, Zhejiang University, Hangzhou 310027, China;
2.Hangzhou Steam Turbine Limited Company, Hangzhou 310022, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the issue that separated recovery-and-utilization effect for surplus gas and sintering waste heat was not significant, a power generation method of associated energy combined cycle system in ironmaking process (AECCSIP) was proposed. Sintering waste heat was transported into heat recovery steam generator, and coupled with the traditional surplus-gas gas-steam combined cycle system by means of system integration, which formed the (AECCSIP) and cascade utilized the associated resources of surplus gas and sintering waste heat in ironmaking process. Based on the theory of energy, exergy and energy level balances, thermodynamic performances of the systems before and after integration were analyzed. The energy flow and exergy flow diagrams corresponding to the systems before and after integration were drawn and the energy loss and exergy destruction of each component were calculated. Results show that under the same conditions of initial parameters of surplus gas and thermodynamic parameters on steam side, energy and exergy efficiencies of the system after integration improve by 1.51% and 0.64%, respectively, than that of the system before integration, and energy difference decreases by 11.8%.



Published: 08 December 2011
CLC:  TK 123  
  TM 611.3  
Cite this article:

YAO Hua, SHENG De-ren, LIN Zhang-xin, SONG Si-yuan,CHEN Jian-hong, LI Wei. Thermodynamic performance analysis of associated energy
combined cycle system in ironmaking process. J4, 2011, 45(11): 2008-2013.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.11.020     OR     https://www.zjujournals.com/eng/Y2011/V45/I11/2008


炼铁伴生能源联合循环系统热力学性能分析

针对富余煤气和烧结余热分散回收利用效果不显著的问题,提出一种炼铁伴生能源联合循环发电方法.通过系统整合,即将烧结余热引入余热锅炉,与传统的富余煤气燃气-蒸汽联合循环系统耦合,构成炼铁工序伴生能源联合循环系统,使炼铁工序中伴生的富余煤气和烧结余热资源梯级利用.基于能量平衡、平衡和能级平衡理论,对系统整合前后热力学性能进行分析比对.绘制出整合前后系统的能流图和流图,并计算出系统中各个组件的能损失和损失.结果表明:在富余煤气初参数和蒸汽侧热力参数均相同条件下,整合后系统能效率及效率分别较整合前提高了1.51%和0.64%,而能级差降低了11.8%.

[1] 张春霞, 齐渊洪, 严定鎏, 等. 中国炼铁系统的节能与环境保护[J]. 钢铁, 2006, 41(11): 1-5.
ZHANG Chunxia, QI Yuanhong, YAN Dingliu, et al. Energysaving and environmental protection of ironmaking system in China [J]. Iron and Steel, 2006, 41(11): 1-5.
[2] 殷瑞钰. 绿色制造与钢铁工业[J]. 钢铁, 2000, 35(6): 60-65.
YIN Ruiyu. Green manufacturing vs steel industry [J]. Iron and Steel, 2000, 35(6): 60-65.
[3] 张春霞, 齐渊洪, 刘广林. 钢铁制造流程中环境污染负荷影响的分析评价[J]. 北京科技大学学报, 2000, 20(增刊): 1-4.
ZHANG Chunxia, QI Yuanhong, LIU Guanglin. Analysis on impact of environmental burden in iron & steel manufacturing process [J]. Journal of University of Science and Technology Beijing, 2000, 20(Suppl.): 1-4.
[4] 张寿荣. 炼铁系统节能——我国钢铁工业21世纪技术进步的重点[J]. 钢铁, 2005, 40(5): 1-4.
ZHANG Shourong. Systematic energy saving in ironmakingthe priority to be paid in technological process of Chinas steel industry in the 21st century [J]. Iron and Steel, 2005, 40(5): 1-4.
[5] 王松岭, 董君, 陈海平, 等. 高炉煤气燃气轮机联合循环的发展现状与前景[J]. 燃气轮机技术, 2005, 18(4): 2224, 38.
WANG Songling, DONG Jun, CHEN Haiping, et al. The development situation and prospects of blastfurnacegasfired gas turbine combined cycle [J]. Gas Turbine Technology, 2005, 18(4): 22-24, 38.
[6] 杨中, 何红飞. 上海宝钢高炉煤气联合循环发电机组简介[J]. 燃气轮机技术, 2001, 14(3): 33-38.
YANG Zhong, HE Hongfei. Introduction to blast furnace gas fired combined cycle generating unit of Baosteel in Hanghai [J]. Gas Turbine Technology, 2001, 14(3): 33-38.
[7] 丁毅, 史德明. 马钢烧结带冷机余热发电[J]. 冶金能源, 2007, 26(1): 49-53.
DING Yi, SHI Deming. Generating by using waste heat of sintering cooler of Ma Steel [J]. Energy for Metallurgical Industry, 2007, 26(1): 49-53.
[8] KHALIQ A, KAUSHIK S C. Secondlaw based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat [J]. Applied Energy, 2004, 78(2): 179-197.
[9] CIHANN A, HACIHAFIZOLU O, KAHVECI K. Energyexergy analysis and modernization suggestions for a combinedcycle power plant [J]. International Journal of Energy Research, 2006, 30(2): 115-126.

[10] SHI X J, CHE D F. Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system [J]. International Journal of Energy Research, 2007, 31(10): 975-998.
[11] AMERI M, AHMADI P, KHANMOHAMMADI S. Exergy analysis of a 420 MW combined cycle power plant [J]. International Journal of Energy Research, 2008, 32(2): 175-183.
[12] WANG J F, DAI Y P, GAO L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry [J]. Applied Energy, 2009, 86(6): 941-948.
[13] 李振山, 蔡宁生, 尹建威. 整体高炉煤气联合循环(IBFGCC)发电系统性能分析[J]. 工程热物理学报, 2004, 25(2): 193-196.
LI Zhenshan, CAI Ningsheng, YIN Jianwei. Performance analysis of integrated blast furnace gas combined cycle system [J]. Journal of Engineering Thermophysics, 2004, 25(2): 193-196.
[14] MODESTO M, NEBRA S A. Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method [J]. Energy, 2006, 31(15): 3261-3277.
[15] MODESTO M, NEBRA S A. Exergoeconomic analysis of the power generation system using blast furnace gas and coke oven gas in a Brazil steel mill [J]. Applied Thermal Engineering, 2009, 29(1112): 2127-2136.
[16] DINCER I, ALMUSLIM H. Thermodynamic analysis of reheat cycle steam power plants[J]. International Journal of Energy Research, 2001, 25(8): 727-739.
[17] 傅秦生. 能量系统的热力学分析方法[M]. 西安: 西安交通大学出版社, 2005: 194-197.
[18] 朱明善. 能量系统的分析[M]. 北京: 清华大学出版社, 1988: 310-313.

[10] SHI X J, CHE D F. Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system [J]. International Journal of Energy Research, 2007, 31(10): 975-998.
[11] AMERI M, AHMADI P, KHANMOHAMMADI S. Exergy analysis of a 420 MW combined cycle power plant [J]. International Journal of Energy Research,

[1] GUO Yi-nan, LEI Gang, WANG Tian-xiang, WANG Kai, SUN Da-ming. Numerical simulation of Taconis thermoacoustic oscillation[J]. J4, 2014, 48(2): 327-333.
[2] ZHAO Rui-dong, WU Zhang-hua, LUO Er-cang, DAI Wei. Study on the basic experimental rig for thermoacoustic system[J]. J4, 2013, 47(2): 308-313.
[3] YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator[J]. J4, 2012, 46(9): 1678-1684.
[4] NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong. Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle
[J]. J4, 2010, 44(11): 2159-2163.
[5] HU Jun-Jiang, SHU Xiao-Chi, NIE Xiang-Gong, et al. Feasibility of parallel airpowered and diesel hybrid engine[J]. J4, 2009, 43(09): 1632-1637.