Please wait a minute...
J4  2011, Vol. 45 Issue (11): 2014-2019    DOI: 10.3785/j.issn.1008-973X.2011.11.021
    
Therotical and experimental study on a 120 Hz single stage
pulse tube cryocooler
GAN Zhi-hua1,2, WU Ying-zhe1, YUAN Yuan1, QIU Li-min1,2, ZHANG Xue-jun1,
ZHANG Xiao-bin1, XU xu3
1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
3. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the characteristics of the high frequency regenerator and its influence to the performance of the pulse tube cryocooler, this paper optimized the geometry and operating parameters for the high frequency regenerator by using the numerical model, known as REGEN 3.2. A Stirling type pulse tube cryocooler operating at 120 Hz was designed, fabricated and tested. This cryocooler achieves a no-load temperature of 47.8 K, and can provide a cooling power of 8.0 W at 78.6 K. The result proves preliminarily that with higher frequency together with higher charging pressure, smaller hydraulic diameter and shorter regenerator, it is still possible to let the regenerator keep high efficiency. The experiment also indicated that this cryocooler can cool down fast and the pulse tube orientation effect was well suppressed benefiting from this higher frequency characteristic.



Published: 08 December 2011
CLC:  TB 651  
Cite this article:

GAN Zhi-hua,WU Ying-zhe,YUAN Yuan,QIU Li-min,ZHANG Xue-jun,ZHANG Xiao-bin,XU xu. Therotical and experimental study on a 120 Hz single stage
pulse tube cryocooler. J4, 2011, 45(11): 2014-2019.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.11.021     OR     https://www.zjujournals.com/eng/Y2011/V45/I11/2014


120 Hz单级脉管制冷机理论与实验

为了研究百赫兹以上的高频回热器的特性及其对脉管制冷机性能的影响,采用回热器数值计算程序REGEN3-2对高频回热器的尺寸参数和运行参数进行优化设计,并研制出一台运行频率为120 Hz的斯特林型脉管制冷机,其无负荷制冷温度为47.8 K,在78.6 K有8.0 W制冷量.初步证明配合使用更高的充气压力、采用小水力直径的回热填料以及缩短回热器长度,能够使得回热器在百赫兹以上的高频下仍然保持较高的效率.另外,实验显示该百赫兹高频脉管制冷机能够实现快速降温,脉管方向性问题也得到较好的抑制.

[1] RADEBAUGH R. Pulse tube cryocoolers for cooling infrared sensors [C]∥ Proceedings of SPIE, Infrared Technology and Applications XXVI. Bellingham: SPIE, 2000, 4130: 363-379.
[2] RADEBAUGH R, OGALLAGHER A, Regenerator operation at very high frequencies for microcryocoolers [C]∥ Advances in Cryogenic Engineering. New York: American Institute of Physics (AIP), 2004, 51: 1919-1928.
[3] VANAPALLI S, LEWIS M, GAN Z H, et al., 120 Hz pulse tube cryocooler for fast cooldown to 50 K [J]. Applied Physics Letters, 2007, 90 (7): 072504.
[4] 甘智华,邱利民,LEWIS M,等.可用于THz探测器的百赫兹高频脉管制冷性能研究 [J]. 稀有金属材料与工程, 2008,37(S4):266-270.
GAN Zhihua, QIU Limin, LEWIS M, et al. Performance study on hundred HZ high frequency pulse tube cryocooler for THz detectors [J]. Rare Metal Materials And Engineering, 2008, 37(S4): 266-270.
[5] GARAWAY I, GAN Z H, BRADLEY P, et al. Development of a miniature 150 Hz pulse tube cryocooler [C]∥ Cryocoolers 15. Madison: Omnipress, 2009: 105-113.
[6] DAI W, YU G Y, ZHU S L, et al. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100K [J]. Applied Physics Letters, 2007, 90 (2): 024104.
[7] ZHU S L , YU G Y , DAI W, et al. Characterization of a 300 Hz thermoacousticallydriven pulse tube cooler [J]. Cryogenics, 2009, 49 (1): 51-54.
[8] PETACH M, WATERMAN M, PRUITT G, et al. High frequency coaxial pulse tube microcooler [C]∥ Cryocoolers 15. Madison: Omnipress, 2009: 97-103.
[9] GAN Z H, LIU G J, WU Y Z, et al. Study on a 50 W/80 K single stage Stirling type pulse tube cryocooler [J]. Journal of Zhejiang UniversityScience A, 2008, 9 (9): 1277-1282.
[10] 刘国军.单级斯特林型脉管制冷机的理论和实验研究 [D]. 杭州:浙江大学,2008.
LIU Guojun. Theoretical and experimental investigation on a Stirling type singlestage pulse tube cryocooler [D]. Hangzhou: Zhejiang University, 2008.
[11] GARY J, RADEBAUGH R. An improved model for the calculation of regenerator performance (REGEN31) [C]∥ Proceeding Fourth Interagency Meeting on Cryocoolers.Bethesda: [s. n.], 1991: 165-176.
[12] RADEBAUGH R, LEWIS M, LUO E C, et al. Inertance tube optimization for pulse tube refrigerators [C]∥ Advances in Cryogenic Engineering. New York: American Institute of Physics (AIP), 2004, 51: 59-67.
[13] 陈杰,李卓裴,范炳燕,等.低温惯性管调相机理研究,低温与超导(增刊),2009∶24-29.
CHEN Jie, LI Zhuopei, FAN Bingyan, et al., Investigation of the mechanism of cold inertance tube [J]. Cryogenics and Superconductivity (supplyment), 2009: 24-29.
[14] THUMMES G, SCHREIBER M, LANDGRAF R, et al., Convective heat losses in pulse tube coolers: effect of pulse tube inclination [C]∥ Cryocooler 9. New York: Plenum Press, 1997: 393-402.
[15] KLUNDT K., LIENERTH C, THUMMES G, et al., Use of a pulse tube refrigerator for cooling a HTSAntenna for magnetic resonance imaging [C]∥ Advances in Cryogenic Engineering. New York: Plenum Press, 1998: 2085-2092.
[16] THUMMES G, YANG L W, Development of Stirlingtype pulse tube coolers driven by commercial linear compressors [C]∥ Proceedings of SPIE, Infrared Technology and Applications XXVIII.Bellingham: SPIE, 2003, 4820: 1-14.
[17] WILSON K. B, GEDEON D R, Development of single and twostage pulse tube cryocoolers with commercial linear compressors [C]∥ Cryocoolers 12. New York: Kluwer Academic/Plenum Publishers, 2003: 139-147.
[18] ROSS JR R G, JOHNSON D L, Effect of gravity orientation on the thermal performance of Stirlingtype pulse tube cryocoolers [J]. Cryogenics, 2004, 44 (6/8): 403-408.

[1] GAN Zhi-Hua, FAN Bing-Yan, XU Na-Na, et al. Study on high frequency two-stage pulse tube refrigeration at 35 K:
Part Ⅰ. Theoretical analysis
[J]. J4, 2009, 43(8): 1448-1453.
[2] GAN Zhi-Hua, FAN Bing-Yan, CHEN Jie, et al. Study on high frequency two-stage pulse tube refrigeration at 35 K:
Part Ⅱ. Experimental verification
[J]. J4, 2009, 43(8): 1454-1457.
[3] LI Zhuo-Fei, QIU Li-Min, LIU Guo-Jun, et al. Simulation and experimental study of pulse tube cooler driven by thermoacoustic engine[J]. J4, 2009, 43(8): 1458-1462.