Please wait a minute...
J4  2011, Vol. 45 Issue (9): 1622-1629    DOI: 10.3785/j.issn.1008-973X.2011.09.019
    
Feedback decoupling design of fuzzy configuration
of complex equipment
REN Bin , ZHANG Shu-you
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new method of feedback decoupling design was proposed to resolve the coupling issues of fuzzy configuration design. The fuzzy configuration design is divided into customer domain, functional domain, physical domain, and process domain. Among them, functional domain is mapped to physical domain by the relative gain matrix. Different forms of the relative gain matrix describe different configuration designs, including idealized design, decoupling design and coupling design. In view of the coupling design of fuzzy configuration, the process domain is built, including multi-granularity structures for the variation. The process domain is considered as feedback compensation of coupling design, where the relative gain matrix is adjusted by the structural variation, to realize the feedback decoupling design of fuzzy configuration. Finally, the method was verified in the fuzzy configuration design of a precision plastic injection molding equipment to achieve the fast response of design of complex equipment.



Published: 01 September 2011
CLC:  TP 391  
Cite this article:

REN Bin , ZHANG Shu-you. Feedback decoupling design of fuzzy configuration
of complex equipment. J4, 2011, 45(9): 1622-1629.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.09.019     OR     https://www.zjujournals.com/eng/Y2011/V45/I9/1622


复杂装备模糊配置的反馈式解耦设计

针对模糊配置设计中的耦合问题,提出一种反馈式解耦的设计方法.该方法将模糊配置设计划分为用户域、功能域、物理域和过程域.其中,功能域向物理域的映射过程可通过相对增益矩阵进行表达,不同形式的相对增益矩阵描述不同的模糊配置设计,包括理想设计、解耦设计和耦合设计.对于耦合设计,构建由多粒度结构组成的过程域,多粒度结构用于结构变异.过程域作为耦合设计的反馈补偿域,通过调节功能需要与设计参数之间的相对增益矩阵实现模糊配置的反馈式解耦设计.结合企业实例,将反馈式解耦设计应用在精密塑料注射成型装备的模糊配置过程中,从而实现复杂装备的快速响应设计.

[1] 阴向阳,童秉枢,滕东兴,等.产品配置到产品结构的转化算法[J] .清华大学学报:自然科学版,2000, 40 (5): 58-61.
YIN Xiangyang, TONG Bingshu, TENG Dongxing, et al. Symbol semantic model supporting axiomatic design[J]. Journal of Tsinghua University:Science and Technology,2000,40(5): 58-61.
[2] 刘晓冰,袁长峰,高天一,等.基于特征面向客户的层次型产品配置模型[J].计算机集成制造系统CIMS,2003,9(7):527-531.
LIU Xiaobing, YUAN Changfeng, GAO Tianyi, et al. Layered product configuration model based on feature and faced to customer[J].Computer Integrated Manufacturing Systems, 2003,9(7): 527-531.
[3] 张劲松,王启付,刘清华,等.基于模型的产品智能化配置研究[J].机械工程学报,2003,39(6):128-134.
ZHANG Jinsong, WANG Qifu, LIU Qinghua, et al. Research on model based intelligent product configuration[J].Chinese Journal of Mechanical Engineering, 2003,39(6):128-134.
[4] 楼健人,伊国栋,张树有,等. 基于知识的产品可拓配置与进化设计技术研究[J].浙江大学学报:工学版,2007,41(3):466-470.
LOU Jianren, YI Guodong, ZHANG Shuyou, et al. Research on product extensible configuration and evolution design based on knowledge [J]. Journal of Zhejiang University:Engineering Science, 2007, 41(3):466-470.
[5] SEGURA A, ARIZKUREN I, ARANBURU I, et al. High quality parametric visual product configuration systems over the web [C]∥Proceedings of the Tenth International Conference on 3D Web Technology. Bangor, United Kingdom: ACM, 2005:159-167.
[6] MARCILIO M, THIAGO T B, DONALD C. Decisionmaking coordination in collaborative product configuration [C]∥Proceedings of the ACM Symposium on Applied Computing. Fortaleza, Brazil: ACM, 2008:108-113.
[7] SUH N P, BELL A C, GOSSARD D C. On an axiomatic approach to manufacturing and manufacturing system [J]. Journal of Engineering for Industry, 1978, 100(5):127-130.
[8] LO S, HELANDER M. Use of axiomatic design principles for analysing the complexity of humanmachine systems [J]. Theoretical Issues in Ergonomics Science, 2007, 8(2): 147-169.
[9] JOHANNESSON H L, SODERBERG R. Structure and matrix models for tolerance analysis from configuration to detail design [J]. Research in Engineering Design, 2000, 12(2):112-125.
[10] KULAK O, KAHRAMAN C. Fuzzy multiattribute selection among transportation companies using axiomatic design and analytic hierarchy process [J]. Information Science, 2005, 170(2/4): 191-210.
[11] CARNEVALLI J A, MIGUEL P A C, CALARGE F A. Axiomatic design application for minimising the difficulties of QFD usage [J]. International Journal of Production Economics, 2010, 125(1): 1-12.
[12] 蔡池兰,肖人彬.公理设计下基于系统创新思维的解耦方法[J]. 机械工程学报,2006,42(11):184-191.
CAI Chilan, XIAO Renbin. Structured approach to decouple coupled design in axiomatic design based on sit [J]. Chinese Journal of Mechanical Engineering, 2006,42(11): 184-191.
[13] 曹鹏彬,肖人彬,库琼.公理设计过程中耦合设计问题的结构化分析方法[J]. 机械工程学报,2006,42(3):46-55.
CAO Pengbin, XIAO Renbin, KU Qiong. Structural analytical approach to coupled design in design with axiomatic design [J]. Chinese Journal of Mechanical Engineering, 2006,42(3): 46-55.
[14] 张国军, 王翠雨,程强,等. 面向可适应设计的耦合功能集割裂规划[J]. 华中科技大学学报:自然科学版,2008, 36(6):1-3.
ZHANG Guojun, WANG Cuiyu, CHENG Qiang, et al. Adaptable designoriented tearing and programming of coupled function set [J]. Huazhong Universyty of Sciences & Technology: Natural Science Edition, 2008, 36(6): 1-3.
[15] 胡晖, 韩朝晖,刘建国,等.多变量反馈解耦控制系统研究[J]控制工程,2004,11(6):500-502.
HU Hui, HAN Chaohui, LIU Jianguo, et al. On multivariable feedback decoupling control systems[J]. Control Engineering of China, 2004, 11(6): 500-502.
[16] 涂承媛,曾衍钧. 基于知识的多变量非线性系统变结构解耦控制[J].中国工程科学,2001,3(10):48-52.
TU Chengyuan,ZENG Yanjun. Knowledgebased variable structure decoupling control of a nonlinear multivariable system [J]. Engineering Science, 2001,3(10): 48-52.
[17] 徐承伟. 模糊关系系统的反馈解耦[J]. 自动化学报, 1989,15(6):537-539.
XU Chengwei. The Decoupling of fuzzy systems: A feedback approach [J]. Acta Automatica Sinica, 1989, 15(6):537-539.

[1] ZHAO Jian-jun, WANG Yi, YANG Li-bin. Threat assessment method based on time series forecast[J]. J4, 2014, 48(3): 398-403.
[2] CUI Guang-mang, ZHAO Ju-feng,FENG Hua-jun, XU Zhi-hai,LI Qi, CHEN Yue-ting. Construction of fast simulation model for degraded image by inhomogeneous medium[J]. J4, 2014, 48(2): 303-311.
[3] ZHANG Tian-yu, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Sharpness metric based on histogram of strong edge width[J]. J4, 2014, 48(2): 312-320.
[4] LIU Zhong, CHEN Wei-hai, WU Xing-ming, ZOU Yu-hua, WANG Jian-hua. Salient region detection based on stereo vision[J]. J4, 2014, 48(2): 354-359.
[5] WANG Xiang-bing,TONG Shui-guang,ZHONG Wei,ZHANG Jian. Study on scheme design technique for hydraulic excavator's structure performance based on extension reuse[J]. J4, 2013, 47(11): 1992-2002.
[6] WANG Jin, LU Guo-dong, ZHANG Yun-long. Quantification-I theory based IGA and its application[J]. J4, 2013, 47(10): 1697-1704.
[7] LIU Yu, WANG Guo-jin. Designing developable surface pencil through given curve as its common asymptotic curve[J]. J4, 2013, 47(7): 1246-1252.
[8] HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method
[J]. J4, 2013, 47(7): 1258-1266.
[9] WU Jin-liang, HUANG Hai-bin, LIU Li-gang. Texture details preserving seamless image composition[J]. J4, 2013, 47(6): 951-956.
[10] CHEN Xiao-hong,WANG Wei-dong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. J4, 2013, 47(5): 853-859.
[11] ZHU Fan , LI Yue, JIANG Kai, YE Shu-ming, ZHENG Xiao-xiang. Decoding of rat’s primary motor cortex by partial least square[J]. J4, 2013, 47(5): 901-905.
[12] WU Ning, CHEN Qiu-xiao, ZHOU Ling, WAN Li. Multi-level method of optimizing vector graphs converted from remote sensing images[J]. J4, 2013, 47(4): 581-587.
[13] JI Yu, SHEN Ji-zhong, SHI Jin-he. Automatic ocular artifact removal based on blind source separation[J]. J4, 2013, 47(3): 415-421.
[14] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. J4, 2013, 47(3): 422-430.
[15] LIU Fang, SUN Yun, YANG Geng, LIN Hai. Visualization of social network based on particle swarm optimization[J]. J4, 2013, 47(1): 37-43.