Please wait a minute...
J4  2009, Vol. 43 Issue (12): 2129-2135    DOI: 10.3785/j.issn.1008-973X.2009.12.001
    
Improved Web image retrieval by weighted image annotations
HUANG Peng, CHEN Chun, WANG Can, BU Jia-jun, CHEN  Wei, QIU Guang
(Zhejiang Key Laboratory of Service Robot, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(1044KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A Web image retrieval method was proposed which combines textual terms extracted from Web documents and image contents in order to improve Web image retrieval.  Web  image contents were translated into image annotations by the improved automatic image annotation model. Then the technology of term similarity measurement, as the metric form of  semantic information, was applied to weighting image annotations. These annotations and some terms extracted from Web documents were introduced into Web image retrieval under  the framework of Bayesian  inference network which has an inherent fusion capability of multiple information sources. Experimental results show that the  method improves image  retrieval to some extent by combining Web image contents and terms in Web documents.



Published: 16 January 2010
CLC:  TP 391.41  
Cite this article:

HUANG Feng, CHEN Chun, WANG Can, et al. Improved Web image retrieval by weighted image annotations. J4, 2009, 43(12): 2129-2135.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.12.001     OR     http://www.zjujournals.com/eng/Y2009/V43/I12/2129


使用加权图像标注改进Web图像检索

为了提高Web图像的检索质量,提出了一种融合文本关键字和图像视觉内容的Web图像检索方法.通过改进的图像自动标注模型,将Web图像本身所蕴含的低层视觉特征映射到图像高层语义特征,即图像文本标注;再将词汇相似性计算技术作为语义信息的度量手段,将图像文本标注转换成带有权重的文本标注;利用贝叶斯推理网检索模型内在的多信息融合能力,将带权重的Web图像文本标注特征和Web文档中的文本信息无缝地融合在一起实现Web图像检索.实验结果表明,将Web中的文本关键字和Web图像视觉内容融合起来可在一定程度上提高Web图像检索质量.

[[1]]   RUI Y, HUANG T S, CHANG S F. Image retrieval: current techniques, promising directions and open issues[J]. Journal of Visual Communication and Image Representation, 1999, 10(1): 39-62.
[[2]]   SMEULDERS A W M, WORRING M, SANTINI S, et al. Content-based image retrieval at the end of the early years[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(12):1349-1380.
[[3]]   MONAY F, GATICA-PEREZ D. On image auto-annotation with latent space models[C]∥ Proceedings of the 11th ACM International Conference on Multimedia. New York, USA: ACM, 2003:275-278.
[[4]]   MORI Y, TAKAHASHI H, OKA R. Image-to-word transformation based on dividing and vector quantizing images with words[C]∥ 1st International Workshop on Multimedia Intelligent Storage and Retrieval Management. USA: [s. n], 1999.
[[5]]   DUYGULU P, BARNARD K, FREITAS N, et al. Object recognition as machine translation: learning a lexicon for a fixed image vocabulary[C]∥Proceedings of the 7th European Conference on Computer Vision-Part IV. London, UK: Springer-Verlag, 2002:97-112.
[[6]]   LI J, WANG J Z. Automatic linguistic indexing of pictures by a statistical modeling approach[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(9):1075-1088.
[[7]]   CUSANO C, CIOCCA G, SCHETTINI R. Image annotation using SVM[C]∥ Proceedings of SPIE. San Jose, CA,USA:SPIE, 2004, 5304: 330-338.
[[8]]   JEON J, LAVRENKO V, MANMATHA R. Automatic image annotation and retrieval using cross-media relevance models[C]∥Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Canada: ACM, 2003:119-126.
[[9]]   lAVRENKO V, MANMATHA R, JEON J. A model for learning the semantics of pictures[C]∥Proceedings of Advance in Neutral Information Processing. Cambridge, MA: MIT, 2003:100-107.
[[10]]   JIN Y, KHAN L, WANG L, et al. Image annotations by combining multiple evidence&WordNet[C]∥Proceedings of the 13th Annual ACM International Conference on Multimedia. Singapore: ACM, 2005:706-715.
[[11]]   GHOSHAL A, IRCING P, KHUDANPUR S. Hidden Markov models for automatic annotation and content-based retrieval of images and video[C] ∥Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Salvador, Brazil: ACM, 2005:544-551.
[[12]]   FENG S L, MANMATHA R, LAVRENKO V. Multiple Bernoulli relevance models for image and video annotation[C]∥Computer Vision and Pattern Recognition, 2004. CVPR 2004. University, Amherst, MA, USA: IEEE CS, 2004:1002-1009.
[[13]]   JIANG J J, CONTATH D W. Semantic similarity based on corpus statistics and lexical taxonomy[C]∥Proceedings of International Conference on Research in Computational Linguistics. Taiwan: [s. n.], 1997:1933.
[[14]]   FELLBAUM C.WordNet: an electronic lexical database[M]. USA Cambridge City: MIT Press, 1998.
[[15]]   PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference [M]. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1988.
[[16]]   TURTLE H, CROFT W B. Evaluation of an inference network-based retrieval model[J]. ACM Transactions on Information Systems (TOIS), 1991,9(3):187-222.
[[17]]   BAEZA-YATES R, RIBEIRO-NETO B. Modern information retrieval[M]. England: Addison-Wesley Harlow Press, 1999.
[1] YANH Yu-ting, SHI Yu-hui, XIA Shun-ren. Discussion mechanism based brain storm optimization algorithm[J]. J4, 2013, 47(10): 1705-1711.
[2] ZHU Xiao-en, HAO Xin, XIA Shun-ren. Feature selection algorithm based on Levy flight[J]. J4, 2013, 47(4): 638-643.
[3] SON Chang-il , ZHEN Shuai, XIA Shun-ren. Attractor range based affine registration of multi-modal
brain magnetic resonance images
[J]. J4, 2012, 46(9): 1722-1728.
[4] XIE Di, TONG Ruo-feng, TANG Min, FENG Yang. Distinguishable method for video fire detection[J]. J4, 2012, 46(4): 698-704.
[5] Qi lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors[J]. J4, 2012, 46(2): 280-285.
[6] DAI Yuan-ming, WEI Wei, LIN Yi-ning. An improved Mean-shift tracking algorithm based on
color and texture feature
[J]. J4, 2012, 46(2): 212-217.
[7] LIU Chen-bin, PAN Ying, ZHANG Hai-shi, HUANG Feng-ping, XIA Shun-ren. Detecting MGMT expression status of glioma with magnetic
resonance image
[J]. J4, 2012, 46(1): 170-176.
[8] QIAN Cheng, ZHANG San-yuan. Weighted incremental subspace learning algorithm
suitable for object tracking
[J]. J4, 2011, 45(12): 2240-2246.
[9] CAO Ying, HAO Xin, ZHU Xiao-en, XIA Shun-ren. Mammographic mass segmentation algorithm based on
automatic random walks
[J]. J4, 2011, 45(10): 1753-1760.
[10] LV Gu-lai,LI Jian-ping,LI Qiang,YU Li-xing,ZHU Song-ming,LOU Jian-zhong. Method for rootstock position recognition based on machine vision[J]. J4, 2011, 45(10): 1766-1770.
[11] LAI Xiao-bo , ZHU Shi-qiang. Mutual information based non-parametric
 transform stereo matching algorithm
[J]. J4, 2011, 45(9): 1636-1642.
[12] WANG Jin-de, SHOU Li-dan, LI Xiao-yan, CHEN Gang. Bundling features with multiple segmentations for
object-based image retrieval
[J]. J4, 2011, 45(2): 259-266.
[13] LIU Jian-ming, LU Dong-ming, GE Rong. Global optimization based image inpainting and
its implementation on GPU
[J]. J4, 2011, 45(2): 247-252.
[14] LIANG Wen-feng, XIANG Zhi-yu. Algorithm of robust object tracking using PTZ camera[J]. J4, 2011, 45(1): 59-63.
[15] ZHAN Jiang-tao, LIU Qiang, CHAI Chun-lei. Facial feature tracking using three-dimensional model and
Gabor wavelet
[J]. J4, 2011, 45(1): 30-36.