Please wait a minute...
J4  2012, Vol. 46 Issue (2): 280-285    DOI: 10.3785/j.issn.1008-973X.2012.02.016
    
Human motion capture using wireless inertial sensors
Qi lei1, JIN Wen-guang2, GENG Wei-dong3
1. College of Software Technology, Zhejiang University, Hangzhou 310027,China;
2. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
3. State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Human motion capture is an important technology in the threedimensional character animation production. Since the motion capture process is very expensive and complex, in this paper we introduce a new method that captures the human motion data from the inertial motion sensors attached to the user’s limbs. The user wears multiple wireless inertial motion sensors with accelerometer and magnetometer, and the sensor data are sent to the computer using the wireless sensor network. LevenbergMarquardt based optimization algorithm is applied to estimate the threedimensional orientation of the inertial sensor and then bind the obtained orientation quaternion to the skeleton of the animation character. The root position of the animation character is modified inversely from the relative status of the supporting leg and the ground in order to make the walking motion more realistic. The experimental results show that our method can capture the user’s motion effectively and produce accurate and realistic motion capture data.



Published: 20 March 2012
CLC:  TP 391.41  
Cite this article:

Qi lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors. J4, 2012, 46(2): 280-285.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.02.016     OR     http://www.zjujournals.com/eng/Y2012/V46/I2/280


基于无线惯性传感器的人体动作捕获方法

为解决光学式动作捕捉设备成本高昂和操作复杂的问题,提出一种通过佩戴在用户身体上的无线惯性传感器进行人体动作数据捕获的方法.在用户身体的各个运动部位绑定多个由加速度和磁通传感器构成的无线惯性传感器单元,传感器通过无线信号发送运动传感数据到计算机端,应用优化算法计算惯性传感单元的三维朝向信息,最后将四元数与动画角色的骨骼绑定后生成人体动作数据.为了解决运动过程中的行走导致的骨架根节点移动问题,利用地形参数反向计算和调整角色骨架根节点位置,使生成的动作符合地形和环境要求,达到真实自然的运动效果.实验结果表明,使用无线惯性传感器进行人体动作捕获得到的动作数据准确度高,朝向计算方法运行速度快,能够满足实时性应用的要求,同时显著降低动作捕获的成本和使用复杂度.

[1] HSU E, GENTRY S, POPOVIC J. Examplebased control of human motion [C]∥ Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Grenoble, France: Eurographics Association, 2004: 69-77.
[2] LEE J, CHAI J, REITSMA P S, et al. Interactive control of avatars animated with human motion data [C]∥ Proceedings of the 29th annual conference on Computer graphics and interactive techniques. San Antonio, Texas: ACM, 2002: 491-500.
[3] MAES P, DARRELL T, BLUMBERG B, et al. The ALIVE system: wireless fullbody interaction with autonomous agents [J]. ACM Multimedia Systems, 1997, 5: 105-112.
[4] BLACKBURN J, RIBEIRO E. Human motion recognition using isomap and dynamic time warping [C]∥ Proceedings of the 2nd conference on Human motion. Rio de Janeiro, Brazil: SpringerVerlag, 2007: 285-298.
[5] ISHIGAKI S, WHITE T, ZORDAN VB, et al. Performancebased control interface for character animation [J]. ACM Transactions on Graphics, 2009, 28: 1-8.
[6] CHAI J, HODGINS J K. Performance animation from lowdimensional control signals [C]∥ Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. Los Angeles, California: ACM, 2005: 686-696.
[7] LEE J, HA I. Sensor Fusion and Calibration for Motion Captures using Accelerometers [C]∥ Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, United states: IEEE, 1999: 1954-1959.
[8] MIZELL D. Using gravity to estimate accelerometer orientation [C]∥ Proceedings of the 7th IEEE International Symposium on Wearable Computers. New York, USA: IEEE, 2003: 252-258.
[9] SHIRATORI T, HODGINS J. Accelerometerbased user interfaces for the control of a physically simulated character [J]. ACM Transactions on Graphics, 2008, 27: 1-9.
[10] MANTYJARVI J, HIMBERG J, SEPPANEN T. Recognizing human motion with multiple acceleration sensors [C]∥ Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Tucson, United states: IEEE, 2001: 747-752.
[11] SLYPER R, HODGINS J. Action capture with accelerometers [C]∥ ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Dublin, Ireland: ACM, 2008: 193-199.
[12] DONG W, LIM K Y, GOH Y K, et al. A lowcost motion tracker and its error analysis [C]∥ IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008: 311-316.
[13] LYMPOURIDES V, ARVIND D K, PARKER M. Fully wireless, full body 3D motion capture for improvisational performances [C]∥ In Proceedings of the Workshop on Whole Body Interaction. Boston, USA: ACM, 2009: 221-233.
[14] SAKAGUCHI T, SATO K, INOKUCHI S. Human Motion Capture by Integrating Gyroscopes and Accelerometers [C]∥ IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Washington, USA: IEEE, 1996: 470-475.
[15] BACHMANN E R, MCGHEE R B, YUN X, et al. Inertial and magnetic posture tracking for inserting humans into networked virtual environments [C]∥ Proceedings of the ACM symposium on Virtual reality software and technology. Baniff, Canada: ACM, 2001: 9-16.
[16] BRUDERLIN A, WILLIAMS L. Motion signal processing [C]∥ Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. Los Angeles, USA: ACM, 2005: 97-104.
[17] HASENFRATZ J, LAPIERRE M, SILLION F. A realtime system for full body interaction with virtual worlds [C]∥ Eurographics Symposium on Virtual Enviroments. Grenoble, France: The Eurographics Association, 2004: 147-156.
[18] MADSEN K, NIELSEN H B, TINGLEFF O. Methods for nonlinear least squares problems [M]. Lyngby: Technical University of Denmark Press, 2004: 44-58.
[19] NOCEDAL J, WRIGHT S J. Numerical optimization [M]. New York: Springer, 1999: 359-365.

[1] YANH Yu-ting, SHI Yu-hui, XIA Shun-ren. Discussion mechanism based brain storm optimization algorithm[J]. J4, 2013, 47(10): 1705-1711.
[2] ZHU Xiao-en, HAO Xin, XIA Shun-ren. Feature selection algorithm based on Levy flight[J]. J4, 2013, 47(4): 638-643.
[3] SON Chang-il , ZHEN Shuai, XIA Shun-ren. Attractor range based affine registration of multi-modal
brain magnetic resonance images
[J]. J4, 2012, 46(9): 1722-1728.
[4] XIE Di, TONG Ruo-feng, TANG Min, FENG Yang. Distinguishable method for video fire detection[J]. J4, 2012, 46(4): 698-704.
[5] DAI Yuan-ming, WEI Wei, LIN Yi-ning. An improved Mean-shift tracking algorithm based on
color and texture feature
[J]. J4, 2012, 46(2): 212-217.
[6] LIU Chen-bin, PAN Ying, ZHANG Hai-shi, HUANG Feng-ping, XIA Shun-ren. Detecting MGMT expression status of glioma with magnetic
resonance image
[J]. J4, 2012, 46(1): 170-176.
[7] QIAN Cheng, ZHANG San-yuan. Weighted incremental subspace learning algorithm
suitable for object tracking
[J]. J4, 2011, 45(12): 2240-2246.
[8] LV Gu-lai,LI Jian-ping,LI Qiang,YU Li-xing,ZHU Song-ming,LOU Jian-zhong. Method for rootstock position recognition based on machine vision[J]. J4, 2011, 45(10): 1766-1770.
[9] CAO Ying, HAO Xin, ZHU Xiao-en, XIA Shun-ren. Mammographic mass segmentation algorithm based on
automatic random walks
[J]. J4, 2011, 45(10): 1753-1760.
[10] LAI Xiao-bo , ZHU Shi-qiang. Mutual information based non-parametric
 transform stereo matching algorithm
[J]. J4, 2011, 45(9): 1636-1642.
[11] WANG Jin-de, SHOU Li-dan, LI Xiao-yan, CHEN Gang. Bundling features with multiple segmentations for
object-based image retrieval
[J]. J4, 2011, 45(2): 259-266.
[12] LIU Jian-ming, LU Dong-ming, GE Rong. Global optimization based image inpainting and
its implementation on GPU
[J]. J4, 2011, 45(2): 247-252.
[13] LIANG Wen-feng, XIANG Zhi-yu. Algorithm of robust object tracking using PTZ camera[J]. J4, 2011, 45(1): 59-63.
[14] ZHAN Jiang-tao, LIU Qiang, CHAI Chun-lei. Facial feature tracking using three-dimensional model and
Gabor wavelet
[J]. J4, 2011, 45(1): 30-36.
[15] SONG Kun-po, XIA Shun-ren, XU Qing. Algorithm considering correlation of wavelet coefficients for
ultrasound image denoising
[J]. J4, 2010, 44(11): 2203-2208.