提出针对Landsat 8影像的云识别方法SARM.在对云及其他地物进行光谱分析的基础上,使用Landsat 8可见光到近红外波段(波段1~5)和热红外波段(波段10、11),构建基于像元的波谱面积比值.利用归一化植被指数(NDVI)和波谱面积比值构建影像的散点图,采用高、中、低3种云识别置信区间,完成对云的识别.以3景不同地区的Landsat 8影像为例进行实验,每景选取具有代表性的3个区域,每个区域10 000个像元进行精度分析.结果表明:波谱面积比值增强了云和下垫面的差异,更利于区分;基于波谱面积比值和NDVI的散点图,能够清晰地展现不同地类条件下云的分布特征;利用可调阈值的提取方法能够满足不同研究目的对云识别的需求;与已提出的3种云识别方法相比,总体精度提高10%左右.