针对现有的遥感图像超分辨模型很少考虑噪声、模糊、JPEG压缩等因素对图像重建所带来的影响,以及Transformer模块构建高频信息能力受限的问题,提出多层退化模块. 设计基于CNN和Transformer聚合的网络,使用CNN识别图像的高频信息,Transformer提取全局信息. 利用基于注意力机制的聚合模块将2个模块聚合,在保持全局结构连贯性的同时,显著增强局部高频细节的重建精度. 利用所提模型,在AID数据集上随机选取6个场景进行实验,与MM-realSR模型在PSNR和SSIM指标上进行比较.结果表明,所提模型在PSNR指标上相比于MM-realSR模型平均提高1.61 dB,SSIM指标平均提升0.023.