按栏目浏览

光学工程、电信技术 栏目所有文章列表
(按年度、期号倒序)
    一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
1. 基于卡尔曼滤波的红外图像增强算法
刘涛, 赵巨峰, 徐之海, 冯华君, 陈慧芳
J4    2012, 46 (8): 1534-1539.   DOI: 10.3785/j.issn.1008-973X.2012.08.027
摘要  

针对红外图像中的非均匀性噪声的去除问题,提出基于卡尔曼滤波的红外图像去噪及增强算法.在BayesianMAP框架下分析卡尔曼滤波器对去噪问题的适用性.由于成像电路内部温度上升和参数的细微变化,每个像元的固定模式噪声(FPN)在帧间缓慢变化.基于此点,建立暗帧的噪声模型.将卡尔曼滤波器作用于红外暗帧序列,估计出暗帧中每个像元的FPN水平.引入噪声影响因子(NIF)来评估FPN噪声对像元输出信号的影响.根据NIF自适应地选取每个像元的FPN噪声权重.实际带噪图像减去加权FPN噪声,即得到增强图像.将该算法应用于实拍红外图像,用平均灰度梯度(GMG)评估算法的性能.在目标区域,GMG下降了5.1%,说明算法在去噪的同时很好地保留了目标的边缘.而在平滑区域,GMG下降了85.5%.结果表明,该算法在去除非均匀性噪声,提高图像的对比度方面,取得较好的效果.

2. 模糊神经网络在机载相机稳像中的应用
李迪, 陈向坚, 续志军, 白越
J4    2012, 46 (8): 1540-1545.   DOI: 10.3785/j.issn.1008-973X.2012.08.028
摘要  

针对解决微型飞行器空中拍摄的图像抖动问题,采用自组织递归区间二型模糊神经网络的函数逼近及泛化能力对微型飞行器上的相机振动规律进行模拟,预测机载相机的振动矢量.该自组织递归区间二型模糊神经网络的初始规则数为零,所有规则都是通过结构和参数同时在线学习来产生,网络结构学习采用的是在线区间二型模糊群集,提高自组织递归区间二型模糊神经网络的稳定性及计算精度.仿真结果表明:将自组织递归区间二型模糊神经网络与双BP神经网络进行对比,利用自组织递归区间二型模糊神经网络对微型飞行器相机振动矢量进行预测的精度高.

3. 基于运动约束的泛化Field D*路径规划
马丽莎, 周文晖, 龚小谨, 刘济林
J4    2012, 46 (8): 1546-1552.   DOI: 10.3785/j.issn.1008-973X.2012.08.029
摘要  

为了解决基于栅格的路径规划算法因环境描述的离散化导致规划结果不能满足机器人运动约束,以及单一路径代价的局限致使算法无法适用于复杂环境的问题,提出一种基于运动约束的泛化Field D*算法.该算法的代价函数可同时考虑路程、行驶安全以及行驶时间等一个或多个行驶代价.根据机器人运动模型的特性,在路径点提取过程中结合机器人的最小转弯半径,进行满足运动约束的路径平滑.该算法在多组模拟的复杂环境栅格地图中进行测试,实验结果表明,算法对复杂环境有很好的适应性,同时有效提高路径的可执行性.

首页 | 前页| 后页 | 尾页 第1页 共1页 共3条记录