Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1031-1039    DOI: 10.3785/j.issn.1008-973X.2025.05.016
机械工程     
往复密封平面应变模型与轴对称模型对比研究
彭超1(),张鑫1,靳思博1,杨亮1,何涛2,*(),欧阳小平3
1. 中山大学 海洋工程与技术学院,广东 珠海 519082
2. 中山大学·深圳 智能工程学院,广东 深圳 518107
3. 浙江大学 机械工程学院,浙江 杭州 310058
Comparative study of plane strain and axisymmetric model in reciprocating seal
Chao PENG1(),Xin ZHANG1,Sibo JIN1,Liang YANG1,Tao HE2,*(),Xiaoping OUYANG3
1. School of Ocean Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2. School of Intelligent Systems Engineering, Sun Yat-sen University·Shenzhen, Shenzhen 518107, China
3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2366 KB)   HTML
摘要:

针对往复密封研究中平面应变模型与轴对称模型计算结果差异不明的问题,研究2种模型的宏微观密封特性. 通过数值迭代计算的方法,求解往复作动中密封界面的流体域模型、微观接触模型和变形方程,在宏观零拉伸率的条件下,详细对比2种建模方法的接触压力、油膜压力和摩擦泄漏等密封特性的计算结果差异. 研究结果表明,2种模型的计算结果趋势相同,计算所得的泄漏量较接近,但利用平面应变模型计算得到的静态接触压力、油膜压力、摩擦力均小于轴对称模型,原因是平面应变模型未考虑压缩过程中的负拉伸效应.

关键词: 往复密封平面应变模型轴对称模型负拉伸效应    
Abstract:

The macroscopic and microscopic sealing characteristics of the plane strain model and the axisymmetric model were analyzed aiming at the problems of the unclear differences in computational results between the two models in reciprocating seal studies. The fluid domain model, microscopic contact model, and deformation equations of the sealing interface during reciprocating motion were solved by using a numerical iterative approach. A detailed comparison was conducted between the two modeling methods in terms of contact pressure, oil film pressure, and friction-induced leakage under a macroscopic zero tensile strain condition. Results show that both models exhibit similar computational trends and yield comparable leakage rates. However, the static contact pressure, oil film pressure, and friction force obtained from the plane strain model are lower than those from the axisymmetric model, as the plane strain model does not account for the negative tensile effect during the compression process.

Key words: reciprocating seal    plane strain model    axisymmetric model    negative stretching effect
收稿日期: 2024-06-12 出版日期: 2025-04-25
CLC:  TP 137  
基金资助: 国家重点研发计划资助项目(2022YFC2806504);国家自然科学基金资助项目(52305083);广东省基础与应用基础研究基金资助项目(2023A1515012042);航空科学基金资助项目(2022Z0270M1004);中山大学中央高校基本科研业务费专项资金资助项目(241gqb008);深圳市科技计划资助项目(JCYJ20220530145609021).
通讯作者: 何涛     E-mail: pengch85@mail.sysu.edu.cn;hetao29@mail.sysu.edu.cn
作者简介: 彭超(1991—),男,副教授,博士生,从事流体密封技术的研究. orcid.org/0000-0002-2507-5303.E-mail:pengch85@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
彭超
张鑫
靳思博
杨亮
何涛
欧阳小平

引用本文:

彭超,张鑫,靳思博,杨亮,何涛,欧阳小平. 往复密封平面应变模型与轴对称模型对比研究[J]. 浙江大学学报(工学版), 2025, 59(5): 1031-1039.

Chao PENG,Xin ZHANG,Sibo JIN,Liang YANG,Tao HE,Xiaoping OUYANG. Comparative study of plane strain and axisymmetric model in reciprocating seal. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1031-1039.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1031

图 1  平面单元的本质表达示意图
图 2  轴对称单元的受载荷表达示意图
图 3  轴对称单元的本质表达示意图
图 4  液压缸的结构图
图 5  压缩率定义的示意图
参数数值
密封材料聚氨酯
弹性模量E/MPa49
截面直径d/mm1.708
穆尼-瑞林系数/MPa0.202、6.958
密封内径DSeal/mm无拉伸:25.35
沟槽底径DGroove/mm28.08/28.21/28.42/28.60
活塞杆直径DRod/mm25.35
表面粗糙度Ra/μm1.6
往复行程长度L/mm100
速度u/ (m·s?1)0.1
经验摩擦系数 f0.2
参考黏度 μ0/ (Pa·s)0.038 7
表 1  O形密封、沟槽、活塞杆和流体的基本参数
图 6  往复密封的宏微观特性
图 7  O形密封件的三维模型
图 8  O形密封的有限元二维模型
图 9  往复密封流固耦合的数值计算流程
图 10  二维轴对称、平面应变模型与三维实体模型计算的接触压力对比
图 11  不同压缩率条件下的接触压力分布(轴对称模型)
图 12  不同压缩率条件下的内部应力分布(轴对称模型)
图 13  不同压缩率条件下的接触压力分布(平面模型)
图 14  不同压缩率条件下的内部应力分布(平面模型)
图 15  不同压缩率下的静态接触压力
图 16  当压缩率为16%时不同压力下的静态接触压力
图 17  不同压缩率下的密封微观特性
图 18  利用2种模型计算得到的不同压缩率下摩擦力和泄漏量
1 OLSEN R B. Dynamic seals for advanced hydraulic systems [R]. Dallas TX: Vought Corp, 1981.
2 彭超. 多工况往复密封跨尺度建模及试验研究[D]. 杭州: 浙江大学, 2019.
PENG Chao. Trans-dimensional modelling and experimental study for reciprocating seals under multi- working conditions [D]. Hangzhou: Zhejiang University, 2019.
3 郭媛, 吴凛, 许浩, 等 格莱圈动密封性能分析及密封参数优化[J]. 润滑与密封, 2021, 46 (3): 17- 25
GUO Yuan, WU Lin, XU Hao, et al Analysis of dynamic sealing performance of Glyd ring and optimization of parameters[J]. Lubrication Engineering, 2021, 46 (3): 17- 25
4 蔡智媛, 王冰清, 彭旭东, 等 基于2种预压缩模型的格莱圈静密封性能[J]. 上海交通大学学报, 2019, 53 (11): 1359- 1366
CAI Zhiyuan, WANG Bingqing, PENG Xudong, et al Static sealing performance of Glyd-ring seal with two precompression models[J]. Journal of Shanghai Jiaotong University, 2019, 53 (11): 1359- 1366
5 徐璁, 陆浩, 周毅博, 等 氟硅橡胶与氟橡胶O形圈密封性能仿真[J]. 航空发动机, 2019, 45 (5): 48- 52
XU Cong, LU Hao, ZHOU Yibo, et al Simulation of sealing performance of fluorosilicone rubber O-ring and fluoro rubber O-ring[J]. Aeroengine, 2019, 45 (5): 48- 52
6 刘凤麒, 刘晓玲, 周江敏, 等 滑环圆角半径对液压往复格莱圈接触压力的影响[J]. 润滑与密封, 2019, 44 (11): 61- 66
LIU Fengqi, LIU Xiaoling, ZHOU Jiangmin, et al Influence of slip ring radius on contact pressure of hydraulic reciprocating Glyd-ring[J]. Lubrication Engineering, 2019, 44 (11): 61- 66
7 张妙恬, 李德才, 索双富, 等 基于斯特封的飞机作动器主密封有限元分析[J]. 液压与气动, 2021, 45 (4): 40- 48
ZHANG Miaotian, LI Decai, SUO Shuangfu, et al Finite element analysis of aircraft actuator’s main seal based on Sterling seal[J]. Chinese Hydraulics and Pneumatics, 2021, 45 (4): 40- 48
8 PENG C, OUYANG X, ZHU Y, et al Investigation into the influence of stretching on reciprocating rod seals based on a novel 3-D model vs axisymmetric model[J]. Tribology International, 2018, (117): 1- 14
9 欧阳小平, 刘玉龙, 薛志全, 等 航空作动器O形密封材料失效分析[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1361- 1367
OUYANG Xiaoping, LIU Yulong, XUE Zhiquan, et al Analysis of material fault of O-ring seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1361- 1367
10 王冰清, 李晓暄, 彭旭东, 等 宽温高湿环境下油水两相O形液压杆封性能分析[J]. 润滑与密封, 2025, 50 (1): 1- 10
WANG Bingqing, LI Xiaoxuan, PENG Xudong, et al Performance analysis of oil-water two-phase O-ring hydraulic rod seals under the wide-temperature high-humidity environments[J]. Lubrication Engineering, 2025, 50 (1): 1- 10
11 WANG B, LI X, PENG X, et al Influence of nitrile butadiene rubber (nbr) shore hardness and polytetrafluoroethylene (ptfe) elastic modulus on the sealing characteristics of step rod seals[J]. Lubricants, 2023, 11 (9): 367
doi: 10.3390/lubricants11090367
12 LI Xiaoxuan, WANG Bingqing, PENG Xudong, et al Effect of nitrile butadiene rubber hardness on the sealing characteristics of hydraulic O-ring rod seals[J]. Journal of Zhejiang University: Science A, 2024, 25 (1): 63- 79
doi: 10.1631/jzus.A2200612
13 PENG C, MIAO J, BAUER N, et al Investigation into the inter-lip characteristics of combined seals with double lips in different working conditions[J]. Tribology International, 2023, (178): 108036
14 彭超, 谭爽, 叶强, 等. 作动器差动连接下双唇级联靴形往复密封特性研究[EB/OL]. [2024-06-05]. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2023.0779.
15 ANSYS Inc. Ansys mechanical user’s guide (Release 2023 R1). [2024-06-05]. https://ansyshelp.ansys.com/Views/Secured/corp/v232/en/wb_sim/ds_2d_simulations.html?q=axisymmetric.
16 PENG C, OUYANG X, SCHMITZ K, et al Numerical and experimental study on combined seals with the consideration of stretching effects[J]. Journal of Tribology, 2021, 143 (6): 062301
doi: 10.1115/1.4048496
17 PAYVAR P, SALANT R F A computational method for cavitation in a wavy mechanical seal[J]. Journal of Tribology, 1992, 114 (1): 199- 204
doi: 10.1115/1.2920861
18 PATIR N, CHENG H An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100 (1): 12- 17
doi: 10.1115/1.3453103
19 CARPICK R W The contact sport of rough surfaces[J]. Science, 2018, 359 (6371): 38
doi: 10.1126/science.aaq1814
20 GREENWOOD J A, TRIPP J The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1970, 185 (1): 625- 633
[1] 欧阳小平,薛志全,彭超,周清和,杨华勇. 航空作动器的VL密封特性分析[J]. 浙江大学学报(工学版), 2015, 49(9): 1755-1761.