Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 79-88    DOI: 10.3785/j.issn.1008-973X.2025.01.008
计算机与控制工程     
基于课程学习的跨度级方面情感三元组提取
侯明泽(),饶蕾*(),范光宇,陈年生,程松林
上海电机学院 电子信息学院,上海 201306
Span-level aspect sentiment triplet extraction based on curriculum learning
Mingze HOU(),Lei RAO*(),Guangyu FAN,Niansheng CHEN,Songlin CHENG
School of Electronic Information Engineering Shanghai Dianji University, Shanghai 201306, China
 全文: PDF(875 KB)   HTML
摘要:

现有方面情感三元组提取方法存在无法充分利用预训练模型知识,容易出现过拟合或欠拟合,识别语句细粒度方面词和情感极性的能力不足等问题,为此提出基于课程学习框架的跨度级方面情感三元组提取方法. 该方法基于课程学习框架进行数据预处理,使用预训练模型学习句子的上下文表示,搭建跨度模型提取句子中所有可能的跨度,基于双通道提取方面词和意见词,筛出正确的方面词和意见词组合进行情感分类. 在ASTE-Data-V2数据集上的实验结果表明,所提方法的F1值比SPAN-ASTE的F1值提升了2个百分点,所提方法的实验结果优于GTS、B-MRC、JET等其他方面情感三元组提取方法.

关键词: 课程学习跨度模型方面情感三元组提取双通道情感分类    
Abstract:

Exiting methods of aspect sentiment triplet extraction suffer from the problems of not being able to fully utilize the knowledge of the pre-trained model, being prone to overfitting or underfitting, and having insufficient ability to recognize the fine-grained aspects and sentiments of an utterance. A method for extracting span-level aspect sentiment triples based on a curriculum learning framework was proposed. Data preprocessing was performed based on the curriculum learning framework, and the contextual representation of a sentence was learned using a pre-trained model. By building a span model, all possible spans were extracted in a sentence. Aspect and opinion terms were extracted based on the dual channel, and the correct combinations of aspect-opinion were filtered out for sentiment categorization. Experimental results on the ASTE-Data-V2 dataset show that the F1 value of the proposed method is improved by 2 percentage points over that of SPAN-ASTE. The experimental results of the proposed method outperform the other aspect sentiment triplet extraction methods such as GTS, B-MRC, and JET.

Key words: curriculum learning    span model    aspect sentiment triplet extraction    dual-channel    sentiment categorization
收稿日期: 2023-11-19 出版日期: 2025-01-18
CLC:  TP 391.1  
基金资助: 国家自然科学基金资助项目(61702320).
通讯作者: 饶蕾     E-mail: 226003010119@st.sdju.edu.cn;raol@sdju.edu.cn
作者简介: 侯明泽(1999—),男,硕士生,从事自然语言处理研究. orcid.org/0009-0005-7768-7159. E-mail:226003010119@st.sdju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
侯明泽
饶蕾
范光宇
陈年生
程松林

引用本文:

侯明泽,饶蕾,范光宇,陈年生,程松林. 基于课程学习的跨度级方面情感三元组提取[J]. 浙江大学学报(工学版), 2025, 59(1): 79-88.

Mingze HOU,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG. Span-level aspect sentiment triplet extraction based on curriculum learning. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 79-88.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/79

图 1  课程学习框架
图 2  基于课程学习框架的跨度级方面情感三元组提取方法的网络架构
图 3  课程学习在方面情感三元组提取任务中的训练过程
数据集14LAP14RES15RES16RES
NSNPOSNNEUNNEGNSNPOSNNEUNNEGNSNPOSNNEUNNEGNSNPOSNNEUNNEG
训练集1266169216648090681712651760578325205857101550329
验证集310404541192191693614114818511532102521176
测试集4927736615532836463116322317251433264072978
表 1  方面情感三元组提取数据集
图 4  ASTE-Data-V2不同子数据集中的句子长度统计图
%
模型14LAP14RES15RES16RES
PRF1PRF1PRF1PRF1
GAS63.4555.6259.2771.7770.9571.7561.3360.8261.0868.3272.1870.20
GAS+CL153.7741.9947.1663.1462.2562.6953.1552.1652.6560.6356.6158.55
GAS+CL263.5456.1759.6369.3468.2268.7858.1059.1858.6365.1868.0966.60
GAS+CL364.3457.6460.7272.5672.0671.9260.6165.3662.9070.1173.9371.97
表 2  GAS引入课程学习框架前后的方面情感三元组提取结果
%
模型14LAP14RES15RES16RES
PRF1PRF1PRF1PRF1
Span-ASTE65.0456.5460.4972.9367.2069.9563.8560.8262.3067.3273.7570.38
Span-ASTE+CL151.5845.1248.1348.7759.5653.7536.4052.1642.8841.1564.2050.15
Span-ASTE+CL260.1558.3859.2565.1269.1167.0645.9965.1553.9254.7065.5659.65
Span-ASTE+CL363.9557.8360.7473.4770.5471.8264.5264.1264.3271.1072.7671.92
表 3  Span-ASTE引入课程学习框架前后的方面情感三元组提取结果
%
模型14LAP14RES15RES16RES
PRF1PRF1PRF1PRF1
BARTABSA57.3556.5256.9364.7359.7962.1658.1760.2159.1767.1769.2668.20
BARTABSA+CL159.8856.2358.0059.2355.6460.2558.3056.4957.3866.2369.4667.81
BARTABSA+CL260.2454.7857.9862.1861.5362.2857.8659.1858.5168.2669.4668.85
BARTABSA+CL361.5657.1058.6365.8662.3963.6260.2961.0360.6669.2070.8270.00
表 4  BARTABSA引入课程学习框架前后的方面情感三元组提取结果
%
模型14LAP14RES15RES16RES
PRF1PRF1PRF1PRF1
SBN68.4272.2270.2774.5556.9464.5763.2160.4161.7870.3271.8371.11
SBN+CL146.4372.2256.5240.4364.5849.7343.5649.7146.4356.3160.3758.27
SBN+CL256.5272.2263.4154.8263.1958.7157.6352.9855.2165.9667.8466.89
SBN+CL371.4283.3376.9275.0058.3365.6364.3761.8463.0870.1173.4371.73
表 5  SBN引入课程学习框架前后的方面情感三元组提取结果
%
模型类型14LAP14RES15RES16RES
PRF1PRF1PRF1PRF1
GAS[15]T560.7872.1662.1070.10
BARTABSA[14]BART61.4156.1958.6965.5264.9965.2559.1459.3859.2666.6068.6867.62
JET[15]BERT55.3947.3351.0470.5655.9462.4064.4551.9657.5370.4258.3763.83
B-MRC[18]BERT65.1254.4159.2771.3270.0970.6963.7158.6361.0567.7468.5668.13
Dual-MRC[19]BERT57.3953.8855.5871.5569.1470.3263.7851.8757.2168.6066.2467.40
GTS[29]BERT57.5251.9254.5870.9269.4970.2059.2958.0758.6768.5866.6067.58
Span-ASTE[18]BERT63.4455.8459.3872.8970.8971.8562.1864.4563.2769.4571.1770.26
本研究BERT62.8356.4359.5672.6871.2671.9662.9763.6163.2969.7571.0470.39
本研究(CL)BERT64.3257.3460.6373.1071.3472.2163.5764.5364.0569.9871.5370.75
本研究RoBERTa65.8756.1760.6474.4972.3173.3863.1264.3763.7470.8172.3671.58
本研究(CL)RoBERTa67.4958.6362.7575.3672.5273.9164.1764.7664.4671.8872.7472.31
表 6  不同模型的方面情感三元组提取任务结果对比
图 5  预训练模型的差异分析
图 6  RoBERTa模型的训练损失函数曲线对比图
1 PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI, 2020, 34(5): 8600–8607.
2 XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction [EB/OL]. (2021–03–09) [2024–01–29]. https://arxiv.org/abs/2010.02609.
3 YAN H, DAI J, QIU X, et al. A unified generative framework for aspect-based sentiment analysis [EB/OL]. (2021–06–08) [2024–01–29]. https://arxiv.org/abs/2106.04300.
4 ZHANG W, LI X, DENG Y, et al. Towards generative aspect-based sentiment analysis [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) . [S.l.]: Association for Computational Linguistics, 2021: 504–510.
5 CHEN S, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI, 2021, 35(14): 12666–12674.
6 MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI, 2021, 35(15): 13543–13551.
7 XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction [EB/OL]. (2021–07–26) [2024–01–29]. https://arxiv.org/abs/2107.12214.
8 CHEN Z, QIAN T. Bridge-based active domain adaptation for aspect term extraction [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) . [S.l.]: Association for Computational Linguistics, 2021: 317–327.
9 SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing . Hong Kong: Association for Computational Linguistics, 2019: 5679–5688.
10 ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks [EB/OL]. (2019–10–13) [2024–01–29]. https://arxiv.org/abs/1909.03477.
11 PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis [C]// Proceeding of the 8th International Workshop on Semantic Evaluation . Dublin: Association for Computational Linguistics, 2014: 27–35.
12 PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis [C]// Proceedings of the 9th International Workshop on Semantic Evaluation . Denver: Association for Computational Linguistics, 2015: 486–495.
13 PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis [C]// Proceedings of the 10th International workshop on Semantic Evaluation . San Diego: Association for Computational Linguistics, 2016: 19–30.
14 BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning [C]// Proceedings of the 26th Annual International Conference on Machine Learning . [S.l.]: Association for Computing Machinery, 2009: 41–48.
15 WANG X, CHEN Y, ZHU W A survey on curriculum learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 4555- 4576
16 PLATANIOS E A, STRETCU O, NEUBIG G, et al. Competence-based curriculum learning for neural machine translation [EB/OL]. (2019–03–06) [2024–01–29]. https://arxiv.org/abs/1903.09848.
17 TAY Y, WANG S, TUAN L A, et al. Simple and effective curriculum pointer-generator networks for reading comprehension over long narratives [EB/OL]. (2019–05–26) [2024–01–29]. https://arxiv.org/abs/1905.10847.
18 LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. (2019–07–26) [2024–01–29]. https://arxiv.org/abs/1907.11692.
19 KOCMI T, BOJAR O. Curriculum learning and minibatch bucketing in neural machine translation [EB/OL]. (2017–07–29) [2024–01–29]. https://arxiv.org/abs/1707.09533.
20 DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. (2019–05–24) [2024–01–29]. https://arxiv.org/abs/1810.04805.
21 WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction [EB/OL]. (2020–11–03) [2024–01–29]. http://arxiv.org/abs/2010.04640.
22 RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer [J]. The Journal of Machine Learning Research , 2020, 21: 1–67.
23 LEWIS M,LIU Y,GOYAL N,et al. BART: denoising swquence-to-sequence pre-training for natural language generation, translation, and comprehension [EB/OL]. (2019–10–29)[2024–01–29]. https://arxiv.org/abs/1910.13461.
24 CHEN Y, KEMING C, SUN X, et al. A span-level bidirectional network for aspect sentiment triplet extraction [C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing . Abu Dhabi: Association for Computational Linguistics, 2022: 4300–4309.
25 JANOCHA K, CZARNECKI W M. On loss functions for deep neural networks in classification [EB/OL]. (2017–02–18) [2024–01–29]. https://arxiv.org/abs/1702.05659.
[1] 周聪聪, 涂春龙, 高云, 王飞翔, 何成, 龚红伟,连平, 叶学松. 腕戴式低功耗无线心率监测装置的研制[J]. 浙江大学学报(工学版), 2015, 49(4): 798-806.