Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2137-2148    DOI: 10.3785/j.issn.1008-973X.2024.10.018
土木工程、交通工程     
膨胀土流态固化改性试验与配合比研究
杜建彪1(),罗强1,2,蒋良潍1,2,曹子奇3,王腾飞1,2,张良1,2,*()
1. 西南交通大学 土木工程学院,四川 成都 610031
2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
3. 中电建铁路建设投资集团有限公司,北京 100071
Fluidized solidification modification tests on expansive soil and its mixing proportions study
Jianbiao DU1(),Qiang LUO1,2,Liangwei JIANG1,2,Ziqi CAO3,Tengfei WANG1,2,Liang ZHANG1,2,*()
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
3. PowerChina Railway Construction Investment Group Limited Company, Beijing 100071, China
 全文: PDF(3774 KB)   HTML
摘要:

流态固化改性是弃方资源化新方式,有助于解决道路工程中异形或狭隘空间难以回填压实问题. 选取南宁地区中等膨胀土弃方,与水、水泥及标准砂混合配制流态固化土试样并开展室内土工试验,分析掺配比对试样膨胀性、强度、流动度及泌水率的影响规律. 结果表明:试样膨胀性由掺灰比和掺砂比决定,受水固比影响小,当掺灰比大于18%且掺砂比超过6%时,试样呈现非膨胀特征. 无侧限抗压强度主要来自水泥水化作用,随掺砂比的增加呈先增大后降低的变化,掺砂比上限宜控制在10%;水固比增加导致强度大幅下降,水固比大于80%后干湿循环条件下的强度衰减趋势显著. 初始流动度与水固比、掺砂比及掺灰比正相关,受掺灰比影响最小;试样拌合完成后的90 min是流动度损失的主要阶段,流动度损失率为23%~32%,随后变化放缓. 泌水率取决于水固比,受掺灰比影响较小. 基于试验规律,经归一化分析得到膨胀土流态固化改性配合比设计流程.

关键词: 膨胀土流态固化土膨胀性无侧限抗压强度流动度配合比    
Abstract:

Fluidized solidification modification constitutes a new method for repurposing discarded materials, offering a solution to challenges associated with backfill compaction in irregular or constrained spaces within road engineering. Employing a distinct variety of medium expansive soil from the Nanning region, and amalgamating it with water, cement, and standardized sand, fluidized solidified soil specimens were developed and evaluated through laboratory-scale geotechnical examinations. The implications of diverse mixing proportions on swelling potential, strength, fluidity and bleeding rate of the specimens were comprehensively analyzed. Results show that the swelling characteristic of the specimens is largely contingent upon the cement-to-aggregate ratio and the sand-to-soil ratio, while the water-to-solid ratio exerts a minimal effect. The specimens manifest non-expansive characteristics when the cement-to-aggregate ratio exceeds 18% and the sand-to-soil ratio surpasses 6%. The unconfined compressive strength primarily emanates from the cement-to-aggregate ratio, exhibiting an initial increase followed by a decline with an augmented sand-to-soil ratio, necessitating sand-to-soil ratio control within 10%. An elevation in the water-to-solid ratio substantially attenuates the strength, with a ratio exceeding 80% markedly accelerating the strength degradation under cyclical wet-dry conditions. Initial fluidity is positively correlated with the water-to-solid ratio, sand-to-soil ratio and cement-to-aggregate ratio, and is least affected by the cement-to-aggregate ratio. The 90 min after the specimen finished mixing is the main stage of fluidity loss, with the rate of fluidity loss ranging from 23% to 32%, and then the change slows down. The bleeding rate is controlled by the water-to-solid ratio and is less affected by the cement-to-aggregate ratio. Based on the experimental pattern, the proportion design process for fluidized solidification modification of expansive soils was derived through data normalization analysis.

Key words: expansive soil    fluidized solidified soil    swelling potential    unconfined compressive strength    fluidity    mixing proportion
收稿日期: 2023-08-05 出版日期: 2024-09-27
CLC:  TU 443  
基金资助: 国家自然科学基金资助项目(52078435);四川省自然科学基金资助项目(2023NSFSC0391).
通讯作者: 张良     E-mail: 1781950412@qq.com;LZhang@swjtu.edu.cn
作者简介: 杜建彪(1997—),男,博士生,从事路基工程研究. orcid.org/0009-0008-8296-4677. E-mail:1781950412@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杜建彪
罗强
蒋良潍
曹子奇
王腾飞
张良

引用本文:

杜建彪,罗强,蒋良潍,曹子奇,王腾飞,张良. 膨胀土流态固化改性试验与配合比研究[J]. 浙江大学学报(工学版), 2024, 58(10): 2137-2148.

Jianbiao DU,Qiang LUO,Liangwei JIANG,Ziqi CAO,Tengfei WANG,Liang ZHANG. Fluidized solidification modification tests on expansive soil and its mixing proportions study. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2137-2148.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2137

图 1  膨胀土样品X射线衍射图谱
图 2  标准砂的粒度级配曲线
图 3  流态固化土配合比
方案S/%C/%W/%TC/d
自由膨胀率6, 8, 10, 12,1418, 21, 24, 2770, 75, 80, 8514
标准吸湿率6, 8, 10, 12,1418, 21, 24, 2770, 75, 80, 8514
无侧限抗压强度6, 8, 10, 12,1418, 21, 24, 2770, 75, 80, 8514
龄期对无侧限抗压强度的影响1018, 21, 24, 2770, 75, 80, 853, 7, 14, 28, 56
干湿循环对无侧限抗压强度的影响1018, 21, 24, 2770, 75, 80, 8514
初始流动度6, 8, 10, 12,1418, 21, 24, 2770, 75, 80, 85
经时流动度1018, 21, 24, 2770, 75, 80, 85
泌水率6, 8, 10, 12,1418, 21, 24, 2770, 75, 80, 85
表 1  流态固化土测试方案
图 4  流态固化土测试流程
图 5  自由膨胀率与标准吸湿含水率随掺灰比的变化曲线
图 6  水泥水化的扫描电镜影像
图 7  砂粒的分布影像
C/%W/%qu/MPa
S=6%S=8%S=10%S=12%S=14%
18700.640.670.730.720.66
750.540.580.620.600.56
800.430.470.500.480.44
850.300.330.380.350.31
21700.780.830.880.870.81
750.670.720.760.730.70
800.530.580.610.580.56
850.360.400.450.410.41
24700.900.981.031.000.96
750.760.810.870.850.82
800.650.660.710.680.65
850.460.490.510.500.47
27701.011.131.191.151.11
750.870.951.000.980.94
800.730.750.810.770.75
850.540.580.580.580.56
表 2  流态固化土的无侧限抗压强度
图 8  无侧限抗压强度与养护龄期关系
图 9  干湿循环后的强度残余率
图 10  水化产物填充孔隙并隔绝渗透通道
C/%W/%f0/mm
S=6%S=8%S=10%S=12%S=14%
1870140148153158162
75163172179185189
80187197205210215
85211221229234239
2170144151157162165
75166175183188192
80190199207212216
85212222231235240
2470146154161165167
75169178185191194
80193202209215219
85215225233239243
2770148157163168170
75172181188192196
80194203211217222
85218227236242246
表 3  流态固化土的初始流动度
图 11  流态固化土的经时流动度
试样编号Bm/%
t=15 mint=30 mint=60 mint=90 mint=120 mint=150 mint=180 min
1S6W75C210.350.521.842.692.802.973.01
2S8W75C210.891.342.393.053.203.273.30
3S10W75C211.141.962.713.613.693.763.80
4S12W75C211.492.243.293.954.004.174.20
5S14W75C211.782.673.664.214.304.454.48
6S10W70C210.761.141.731.952.012.272.31
7S10W80C212.113.174.164.704.764.824.85
8S10W85C212.704.055.305.976.116.256.28
9S10W75C180.971.792.593.573.673.743.78
10S10W75C241.322.132.843.653.733.793.83
11S10W75C271.502.302.953.713.793.833.85
表 4  流态固化土的泌水率
图 12  不同掺砂比试样经时30 min的泌水情况
图 13  流态固化土的无侧限抗压强度(S=10%)
图 14  强度归一化因子与掺灰比和水固比关系
图 15  抗压强度及流动度的测量值与估算值比较
图 16  流态固化土的配合比设计流程
试样qu/MPaδ1/%f0/mmδ2/%
实测估算实测估算
S10C19W700.810.832.47166159?4.23
S10C20W760.750.70?6.67192188?2.08
S10C23W701.011.032.001601685.00
S10C25W750.890.945.621851965.95
表 5  无侧限抗压强度与流动度估算的相对误差
1 詹良通 非饱和膨胀土边坡中土水相互作用机理[J]. 浙江大学学报: 工学版, 2006, 40 (3): 494- 500
ZHAN Liangtong Study on soil-water interaction in unsaturated expansive soil slopes[J]. Journal of Zhejiang University: Engineering Science, 2006, 40 (3): 494- 500
2 庄心善, 周睦凯, 周荣, 等 EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1353- 1362
ZHUANG Xinshan, ZHOU Mukai, ZHOU Rong, et al Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1353- 1362
3 MAHEEPALA M M A L N, NASVI M C M, ROBERT D J, et a1 Mix design development for geopolymer treated expansive subgrades using artificial neural network[J]. Computers and Geotechnics, 2023, 161: 105534
doi: 10.1016/j.compgeo.2023.105534
4 American Concrete Institute. Report on controlled low-strength materials :ACI 229R-13 [R]. Farmington Hills: ACI, 2013.
5 QIAN J S, HU Y, ZHANG J, et a1 Evaluation the performance of controlled low strength material made of excess excavated soil[J]. Journal of Cleaner Production, 2019, 214: 79- 88
doi: 10.1016/j.jclepro.2018.12.171
6 ZHU Y, LIU D R, FANG G, et al Utilization of excavated loess and gravel soil in controlled low strength material: laboratory and field tests[J]. Construction and Building Materials, 2022, 360: 129604
doi: 10.1016/j.conbuildmat.2022.129604
7 四川省住房和城乡建设厅. 预拌流态固化土工程应用技术标准: DBJ51/T188−2022 [S]. 成都: 西南交通大学出版社, 2022.
8 行宏木幡 流動化処理土の力学特性と今後の課題[J]. 土木学会論文集F, 2006, 62 (4): 618- 627
KOHATA Yukihiro Mechanical property of liquefied stabilized soil and future issues[J]. Doboku Gakkai Ronbunshuu F, 2006, 62 (4): 618- 627
doi: 10.2208/jscejf.62.618
9 顾欢达, 陈甦 河道淤泥的流动化处理及其工程性质的试验研究[J]. 岩土工程学报, 2002, 24 (1): 108- 111
GU Huanda, CHEN Su Engineering properties of river sludge and its stabilization[J]. Chinese Journal of Geotechnical Engineering, 2002, 24 (1): 108- 111
doi: 10.3321/j.issn:1000-4548.2002.01.025
10 李志越, 戴国亮, 杜硕, 等 海上风电基础流态固化土抗冲刷特性试验研究[J]. 东南大学学报: 自然科学版, 2023, 53 (4): 647- 654
LI Zhiyue, DAI Guoliang, DU Shuo, et al Experimental study on scour resistance characteristics of fluid cured soil for offshore wind power foundation[J]. Journal of Southeast University: Natural Science Edition, 2023, 53 (4): 647- 654
11 周永祥, 霍孟浩, 侯莉, 等. 低强度流态填筑材料的研究现状及展望[EB/OL]. (2023−08−01)[2023−08−05]. https://kns.cnki.net/kcms2/detail/50.1078.TB.20230801.1604.008.html.
12 中国工程建设标准化协会. 预拌流态固化土填筑技术标准: T/CECS 1037-2022 [S]. 北京: 中国建筑工业出版社, 2022.
13 朱瑜星, 卞怡, 闵凡路, 等 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53 (Suppl.1): 245- 251
ZHU Yuxing, BIAN Yi, MIN Fanlu, et al Improvement of metro shield muck to controlled low-strength material[J]. China Civil Engineering Journal, 2020, 53 (Suppl.1): 245- 251
14 黄锐, 刘国强, 朱祐增, 等 基于城市顶管废土的可控低强度材料(CLSM)及性能影响因素研究[J]. 隧道建设(中英文), 2021, 41 (Suppl.2): 346- 352
HUANG Rui, LIU Guoqiang, ZHU Youzeng, et al Controlled low strength materials based on pipe jacking waste soil and their property influencing factors[J]. Tunnel Construction, 2021, 41 (Suppl.2): 346- 352
15 YE H, CHU C, XU L, et al Experimental studies on drying-wetting cycle characteristics of expansive soils improved by industrial wastes[J]. Advances in Civil Engineering, 2018, 2018: 2321361
doi: 10.1155/2018/2321361
16 姚海林, 杨洋, 程平, 等 膨胀土壤标准吸湿含水率及其试验方法[J]. 岩土力学, 2004, 25 (6): 856- 859
YAO Hailin, YANG Yang, CHENG Ping, et al Standard moisture absorption water content of soil and its testing standard[J]. Rock and Soil Mechanics, 2004, 25 (6): 856- 859
doi: 10.3969/j.issn.1000-7598.2004.06.003
17 姜屏, 陈业文, 陈先华, 等 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报: 工学版, 2023, 53 (6): 1809- 1818
JIANG Ping, CHEN Yewen, CHEN Xianhua, et al Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze-thaw cycles[J]. Journal of Jilin University: Engineering and Technology Edition, 2023, 53 (6): 1809- 1818
18 杨俊, 刘子豪, 张国栋, 等 复合方法改良膨胀土无侧限抗压强度试验研究[J]. 地下空间与工程学报, 2016, 12 (4): 1069- 1076
YANG Jun, LIU Zihao, ZHANG Guodong, et al Experimental research on unconfined compressive strength of expansive soil improved by composite method[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (4): 1069- 1076
19 吴爱祥, 孙伟, 王洪江, 等 塌陷区全尾砂-废石混合处置体抗剪强度特性试验研究[J]. 岩石力学与工程学报, 2013, 32 (5): 917- 925
WU Aixiang, SUN Wei, WANG Hongjiang, et al Experimental research on shear behavior of subsidence backfill body mixed by unclassified tailings and waste rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (5): 917- 925
doi: 10.3969/j.issn.1000-6915.2013.05.009
20 SAITOH S, SUZUKI Y, SHIRAI K. Hardening of soil improved by deep mixing method [EB/OL]. (1985−03−01) [2023−08−05]. https://www.issmge.org/uploads/publications/1/34/1985_03_0127.pdf
21 邓晓轩, 黄新, 宁建国 外掺剂对水泥固化土强度的影响[J]. 岩土工程学报, 2011, 33 (10): 1628- 1633
DENG Xiaoxuan, HUANG Xin, NING Jianguo Influence of admixture on strength of stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (10): 1628- 1633
22 孙伟, 吴爱祥, 王洪江, 等 全尾砂-废石混合回填膏体流动特性变化规律[J]. 岩土力学, 2013, 34 (12): 3464- 3470
SUN Wei, WU Aixiang, WANG Hongjiang, et al The change laws of flow characteristics of backfill paste mixed by unclassified tailings and waste rock[J]. Rock and Soil Mechanics, 2013, 34 (12): 3464- 3470
23 王维, 侯中瑞, 王强, 等 水泥土圆柱体试件与立方体试无侧限抗压强度关系研究[J]. 中国水运, 2021, 21 (10): 124- 125
WANG Wei, HOU Zhongrui, WANG Qiang, et al Study on the relationship between unconfined compressive strength of hydraulic soil cylindrical specimen and cubic specimen[J]. China Water Transport, 2021, 21 (10): 124- 125
24 刘科, 刘霖, 张永鹏 干湿/冻融循环作用下改良隔离墙的渗透性及孔隙结构[J]. 建筑材料学报, 2022, 25 (5): 545- 550
LIU Ke, LIU Lin, ZHANG Yongpeng permeability and pore structure of improved isolation wall under the action of dry-wet/freeze-thaw cycles[J]. Journal of Building Materials, 2022, 25 (5): 545- 550
doi: 10.3969/j.issn.1007-9629.2022.05.015
25 WANG L, FENG W, LAZARO S A M, et al Engineering properties of soil-based controlled low-strength materials made from local red mud and silty soil[J]. Construction and Building Materials, 2022, 358: 129453
doi: 10.1016/j.conbuildmat.2022.129453
26 YAN D Y S, TANG Y I, LO I M C. Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction [J]. Construction and Building Materials. 2014, 64: 201–207.
27 谢宏伟, 罗强, 蒋良潍, 等 高速铁路无砟轨道路基动应力概率分布特征及估算方法[J]. 振动与冲击, 2023, 42 (12): 29- 38
XIE Hongwei, LUO Qiang, JIANG Liangwei, et al Robability distribution characteristics and an estimation method for dynamic stress of high-speed railway ballastless track subgrade[J]. Journal of Vibration and Shock, 2023, 42 (12): 29- 38
28 常丹, 刘建坤, 李旭 冻融循环下粉砂土应力-应变归一化特性研究[J]. 岩土力学, 2015, 36 (12): 3500- 3505
CHANG Dan, LIU Jiankun, LI Xu Normalized stress-strain behavior of silty sand under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36 (12): 3500- 3505
[1] 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性[J]. 浙江大学学报(工学版), 2024, 58(3): 547-556.
[2] 李丽华,李孜健,肖衡林,黄少平,刘一鸣. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.
[3] 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.
[4] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[5] 杨微,任孟健,陈仁朋,刘雪莹,康馨. 复杂环境条件下改性膨润土的抗盐性能[J]. 浙江大学学报(工学版), 2021, 55(10): 1885-1893.
[6] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[7] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[8] 罗斌,黄炜,马相,李斌,周文彩,任杉杉. 采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能[J]. 浙江大学学报(工学版), 2019, 53(11): 2185-2196.
[9] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[10] 龚灵力, 金南国, 何小勇, 金贤玉. 基于骨料信息的自密实混凝土配合比设计新方法[J]. J4, 2010, 44(4): 826-830.
[11] 桂跃, 高玉峰, 张庆, 陈国栋, 李振山. 疏浚淤泥生石灰-磷石膏材料化处理效果[J]. J4, 2010, 44(10): 1974-1978.
[12] 邵玉芳 龚晓南 徐日庆 刘增永. 含腐殖酸软土的固化试验研究[J]. J4, 2007, 41(9): 1472-1476.
[13] 徐日庆 郭印 刘增永. 人工制备有机质固化土力学特性试验研究[J]. J4, 2007, 41(1): 109-113.
[14] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.
[15] 陈斌 李富强 刘国华 钱镜林 刘西军. 混凝土配合比的非线性多目标优化算法研究[J]. J4, 2005, 39(1): 16-19.