Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 799-807    DOI: 10.3785/j.issn.1008-973X.2024.04.015
机械工程、能源工程     
电动汽车充电桩的气动噪声分析和优化
潘琦1(),江丙云1,2,*(),陈云1
1. 国创移动能源创新中心(江苏)有限公司,江苏 常州 213166
2. 浙江大学 机械工程学院,浙江 杭州 310027
Aerodynamic noise analysis and optimization for charging pile of electric vehicle
Qi PAN1(),Bingyun JIANG1,2,*(),Yun CHEN1
1. National Innovation Center of Mobile Energy (Jiangsu) Limited Company, Changzhou 213166, China
2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2865 KB)   HTML
摘要:

分析180 kW大功率直流充电桩在不同工况下的气动噪声特性,进行整桩的降噪优化设计. 采用计算流体力学(CFD)与计算气动声学(CAA)分步耦合仿真的方法,分析整桩的噪声频谱和声场分布规律;开展整桩试验测试,验证仿真的精确性;对比、分析不同降噪方案的降噪性能,并进行方案的试验验证. 结果显示,整桩噪声主频为830 Hz,整桩噪声次频为650 Hz,分别与电源模块风扇以及系统风扇的叶片通过频率重合;在电源模块进风口布置吸音棉能够有效消除整桩噪声第三、第四峰值频率幅值;在系统风扇出风口布置吸音棉能够使整桩A计权声压级总值降低约1.2 dB;相同布置位置,在保证散热的同时增加吸音棉厚度的降噪效果不显著,整桩A计权声压级总值降低不足1.0 dB.

关键词: 气动噪声散热风扇充电桩降噪优化    
Abstract:

The aerodynamic noise characteristics of the 180 kW high-power DC charging pile under different working conditions were analyzed, and the optimization design was applied for noise reduction of the charging pile. The noise spectrum and sound field distribution of the charging pile were simulated by the multi-step coupling method of computational fluid dynamics (CFD) and computational aeroacoustics (CAA). The test of the charging pile was carried out to verify the accuracy of the simulation. The effectiveness of different noise reduction schemes was compared and analyzed, and the test validation of the schemes was carried out. Results showed that the basic frequency of the charging pile noise was 830 Hz, which coincided with the blade passing frequency of the fan in the power module, and the second peak frequency of the charging pile noise was 650 Hz, which coincided with the blade passing frequency of the system fan. The third and fourth peak frequency amplitudes of the charging pile noise were effectively eliminated by arranging sound-absorbing cotton in the power module air inlet. The overall A-weighted sound pressure level of the charging pile was reduced by about 1.2 dB by arranging sound-absorbing cotton in the system fan outlet. At the same arrangement position, the noise reduction effect of increasing the sound-absorbing cotton thickness was not remarkable while ensuring heat dissipation, and the reduction of the overall A-weighted sound pressure level of the charging pile was less than 1.0 dB.

Key words: aerodynamic noise    cooling fan    charging pile    noise reduction optimization
收稿日期: 2023-04-07 出版日期: 2024-03-27
CLC:  TM 7  
基金资助: 江苏省重大共性技术研发资助项目(GC04C200001);常州市第十五批科技计划资助项目(CZ20210009).
通讯作者: 江丙云     E-mail: qi.pan@wbstar.com;bingyun.jiang@zju.edu.cn
作者简介: 潘琦(1994—),男,中级工程师,硕士,从事充电设备的气动噪声工程研究. orcid.org/0009-0004-7656-6219. E-mail:qi.pan@wbstar.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
潘琦
江丙云
陈云

引用本文:

潘琦,江丙云,陈云. 电动汽车充电桩的气动噪声分析和优化[J]. 浙江大学学报(工学版), 2024, 58(4): 799-807.

Qi PAN,Bingyun JIANG,Yun CHEN. Aerodynamic noise analysis and optimization for charging pile of electric vehicle. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 799-807.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/799

图 1  桩体模型示意图
图 2  风扇逆向三维模型
图 3  风扇远场1 m测点的A计权声压级频谱图
图 4  整桩流场计算模型
图 5  整桩流场切面云图
图 6  整桩声学模型
图 7  声学测点的噪声频谱
图 8  声场分布云图
图 9  声学测试设备
测试点环温25 ℃环温30 ℃环温35 ℃环温40 ℃
LpA,S/dBLpA,T/dBEv/%LpA,S/dBLpA,T/dBEv/%LpA,S/dBLpA,T/dBEv/%LpA,S/dBLpA,T/dBEv/%
74.572.92.177.075.71.778.977.32.083.481.52.3
58.251.413.060.053.911.361.354.811.866.557.414.8
62.960.83.464.765.0?0.566.165.60.770.569.11.4
62.159.64.264.563.02.465.964.42.370.267.53.3
表 1  不同工况下各测点的A计权声压级
图 10  吸音棉布置位置
方案δ/mm布置位置
115系统风扇出口
215模块前门板
315系统风扇出口+模块前门板
420系统风扇出口+模块前门板
525系统风扇出口+模块前门板
表 2  吸音棉布置方案
图 11  吸音棉不同布置位置的整桩声学结果
图 12  吸音棉不同厚度的整桩声学结果
1 钟思阳, 黄迅 气动声学和流动噪声发展综述: 致初学者[J]. 空气动力学学报, 2018, 36 (3): 363- 371
ZHONG Siyang, HUANG Xun A review of aeroacoustics and flow-induced noise for beginners[J]. Acta Aerodynamica Sinica, 2018, 36 (3): 363- 371
2 胡彬彬, 欧阳华, 吴亚东, 等 偶极子噪声在均匀流管道中传播的声学模型[J]. 上海交通大学学报, 2013, 47 (5): 692- 696
HU Binbin, OUYANG Hua, WU Yadong, et al An acoustic model of propagation of dipole source in uniform flow duct[J]. Journal of Shanghai Jiao Tong University, 2013, 47 (5): 692- 696
3 张鹏飞, 朱茂桃, 王宽, 等 发动机冷却风扇总成气动噪声数值预测[J]. 制造业自动化, 2014, 36 (22): 98- 101
ZHANG Pengfei, ZHU Maotao, WANG Kuan, et al Numerical prediction of engine cooling fan aerodynamic noise[J]. Manufacturing Automation, 2014, 36 (22): 98- 101
4 王嘉冰, 刘敏, 吴克启 开式轴流风扇气动噪声预测[J]. 工程热物理学报, 2007, 28 (5): 778- 780
WANG Jiabing, LIU Min, WU Keqi, et al Aerodynamic noise prediction of the open axial flow fan[J]. Journal of Engineering Thermophysics, 2007, 28 (5): 778- 780
5 LEE D J, JEON W H, CHUNG K H. Development and application of fan noise prediction method to axial and centrifugal fan [C]// ASME 2002 Joint U. S.-European Fluids Engineering Division Conference . Montreal: ASME, 2002: 987–992.
6 陈晓林. 空调室内机噪声数值模拟及实验研究[D]. 青岛: 青岛理工大学, 2014.
CHEN Xiaolin. Numerical simulation and experiment study of the noise by indoor unit of air conditioner [D]. Qingdao: Qingdao Technological University, 2014.
7 汤黎明. 工程机械冷却风扇流场特性与气动噪声研究[D]. 长春: 吉林大学, 2014.
TANG Liming. Research on aerodynamic characteristics and aeroacoustics for cooling fan of construction machinery [D]. Changchun: Jilin University, 2014.
8 何博, 李建建, 吴俊鸿 轴流风叶气动噪声仿真分析及结构改进[J]. 制冷与空调, 2021, 21 (4): 26- 31
HE Bo, LI Jianjian, WU Junhong, et al Simulation analysis and structure improvement for aerodynamic noise of axial-flow fan[J]. Refrigeration and Air-Conditioning, 2021, 21 (4): 26- 31
9 艾奇. 微型计算机CPU散热器中轴流风扇噪声计算方法与优化的研究[D]. 广州: 华南理工大学, 2011.
AI Qi. A research on calculation and optimization method for noise control in an axial fan of CPU cooler of PC [D]. Guangzhou: South China University of Technology, 2011.
10 SØRENSEN D N Minimizing the trailing edge noise from rotor-only axial fans using design optimization[J]. Journal of Sound and Vibration, 2001, 247 (2): 305- 323
doi: 10.1006/jsvi.2001.3735
11 彭博. 服务器气动噪声数值仿真方法研究与降噪设计[D]. 成都: 电子科技大学, 2009.
PENG Bo. Research on numerical simulation method and noise reduction design of server aerodynamic noise [D]. Chengdu: University of Electronic Science and Technology of China, 2009.
12 张倩. 服务器气动噪声仿真方法研究与降噪设计[D]. 成都: 电子科技大学, 2011.
ZHANG Qian. Research on aerodynamic noise simulation method and noise reduction design of server [D]. Chengdu: University of Electronic Science and Technology of China, 2011.
13 张寰, 陈剑 刀片服务器散热系统噪声实验研究[J]. 声学技术, 2008, 27 (4): 584- 587
ZHANG Huan, CHEN Jian Experimental research on noise of cooling system for blade server[J]. Technical Acoustic, 2008, 27 (4): 584- 587
14 黄磊. 吸声材料与隔声材料在空调降噪中的应用[D]. 长沙: 湖南大学, 2016.
HUANG Lei. Application of sound absorption and insulation material in air conditioner noise reduction [D]. Changsha: Hunan University, 2016.
15 LIGHTHILL M J On sound generated aerodynamically I. General theory[J]. Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 1952, 211: 564- 587
16 CURLE N The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 1955, 231: 505- 514
17 WILLIAMS J E F, HAWKINGS D L Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 1969, 264: 321- 342
18 LOWSON M V Theoretical analysis of compressor noise[J]. Journal of the Acoustical Society of America, 1970, 42: 371- 385
19 黄珊. 发动机舱风扇气动噪声特性的数值模拟研究[D]. 长春: 吉林大学, 2019.
HUANG Shan. Numerical simulation of aerodynamic noise characteristics for engine compartment fan [D]. Changchun: Jilin University, 2019.
[1] 尚夏,王美佳,许刘晓,章立辉. 城市区域电动汽车充电设施配置优化[J]. 浙江大学学报(工学版), 2020, 54(6): 1210-1217.
[2] 左曙光, 李悦姣, 吴旭东, 韦开君, 孙罕. 爪极电机气动噪声数值模拟及机理分析[J]. 浙江大学学报(工学版), 2017, 51(3): 612-619.
[3] 罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185.
[4] 郝宗睿, 王乐勤, 周忠海, 吴大转. 空腔流场及气动噪声数值模拟[J]. J4, 2013, 47(1): 131-138.