Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2303-2312    DOI: 10.3785/j.issn.1008-973X.2022.11.021
土木工程     
循环加载强化作用对花岗岩细观破坏影响的离散元研究
张霄1(),于昊1,李壮1,刘衍顺1,张紫东1,籍鑫雨1,李相辉2
1. 山东大学 岩土与结构工程研究中心,山东 济南 250061
2. 山东大学 土建与水利学院,山东 济南 250061
Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite
Xiao ZHANG1(),Hao YU1,Zhuang LI1,Yan-shun LIU1,Zi-dong ZHANG1,Xin-yu JI1,Xiang-hui LI2
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. School of Civil Engineering, Shandong University, Jinan 250061, China
 全文: PDF(5840 KB)   HTML
摘要:

基于室内单轴压缩试验结果,采用离散元方法建立等效晶质模型(GBM). 根据室内循环加卸载试验结果改进GBM模型晶内、晶间接触模型,建立能够准确表征循环加载强化作用的GBM强化模型,借此GBM强化模型揭示循环加载强化作用对花岗岩单轴压缩过程细观破坏的影响机制. 结果表明,在峰前应力阶段,自锁效应造成的应力分布不同,导致晶内/晶间接触出现以张拉为主的裂纹,石英、长石依次成为承载主体;在峰后应力阶段,前期强化作用所积蓄的剪切能量得到释放,导致长石出现密集的晶内裂纹,是试块失稳的主要标志;长石周边矿物差异性失效引起长石矿物破坏路径改变,造成试块峰值应力随强化系数增大呈现波动性增长. 构建的GBM强化模型为研究循环加载强化作用对脆性岩石不同加载路径细观破坏机制提供新方法.

关键词: 花岗岩循环加载强化作用离散元GBM强化模型微裂纹特征细观破坏机理    
Abstract:

A grain-based model (GBM) was established based on the results of uniaxial compression test by discrete element method. The intragranular and intergranular contact model of GBM was improved according to the results of indoor cyclic loading and unloading tests. A grain-based reinforcement model was established, which accurately characterized the cyclic loading strengthening effect. The grain-based reinforcement model was used to reveal the influence mechanism of cyclic loading strengthening on the mesoscopic failure of granite during uniaxial compression. The results showed that the stress distribution by self-locking effect was different in the pre-peak stress stage, which led to tensile microcracks in intergranular and intragranular contact. The Quartz and feldspar became load-bearing bodies in turn. The shear energy by the earlier strengthening was released in the post-peak stress stage, leading to the intensive intergranular microcracks of feldspar. The phenomenon was the main sign of the instability of the specimen. The differential failure of the minerals around the feldspar caused the change of the feldspar destruction pathways and the peak stress of test block increased with the enlargement of strengthening factor. The grain-based reinforcement model provides a new method, which is used to study the mesoscopic failure mechanism of brittle rocks with different loading paths on cyclic loading strengthening.

Key words: granite    cyclic loading strengthening effect    discrete element    grain-based reinforcement model    micro-cracking behavior    mesoscopic failure mechanism
收稿日期: 2021-12-27 出版日期: 2022-12-02
CLC:  TU 452  
基金资助: 中央高校基本科研业务费资助项目(2019GN079)
作者简介: 张霄(1983—),男,教授,博导,主要从事岩土工程、流体动力学相关实验方法及应用技术、新型环保工程材料等研究. orcid.org/0000-0003-2107-2057. E-mail: sduzhangxiao@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张霄
于昊
李壮
刘衍顺
张紫东
籍鑫雨
李相辉

引用本文:

张霄,于昊,李壮,刘衍顺,张紫东,籍鑫雨,李相辉. 循环加载强化作用对花岗岩细观破坏影响的离散元研究[J]. 浙江大学学报(工学版), 2022, 56(11): 2303-2312.

Xiao ZHANG,Hao YU,Zhuang LI,Yan-shun LIU,Zi-dong ZHANG,Xin-yu JI,Xiang-hui LI. Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2303-2312.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2303

图 1  白麻花岗岩
矿物成分 ωc/% 矿物成分 ωc/%
石英 45.64 云母 6.75
斜长石 23.02 其他矿物 0.40
钾长石 24.19
表 1  不同矿物成分的质量分数
图 2  GBM模型构建过程示意图[17]
种类 颗粒基本参数 晶体内部细观参数 晶体边界细观参数
ωc/
%
Rmin/
mm
Rmax /
mm
ρ/
(kg·m?3
E/
GPa
${\bar {\boldsymbol{k}}_{\text{n} } }/{\bar {\boldsymbol{k}}_{\text{s} } }$ $ {\overline \sigma _{\text{c}}} $/
MPa
c/
MPa
φ/
(°)
μ ${\bar {\boldsymbol{k}}_{\text{n} } }$/
(GPa·m?1
${\bar {\boldsymbol{k}}_{\text{s} } }$/
(GPa·m?1
$ {\overline \sigma _{\text{t}}} $/
MPa
$ {\overline \sigma _{\text{c}}} $/
MPa
φ/
(°)
μ
石英 46 0.2 1.8 2 650 6.64 1 82.67 82.67 50 0.5 3×1011 6.25×1010 72.4 123.6 20 0.4
长石 47 0.5 1.8 2 600 5.13 2 103.6 103.60 35 0.5
云母 7 0.5 1.8 3 050 3.14 2 62.00 62.00 30 0.5
表 2  GBM模型细观参数表
项目 σu/MPa E/GPa εu
原状试块 160.1 16.0 0.012 5
GBM模型 163.6 15.7 0.011 6
表 3  原状试块与GBM模型宏观参数
图 3  原状试块与GBM模型应力-应变曲线对比
图 4  各循环加载阶段残余变形
图 5  原状试块与预处理试块应力-应变曲线
图 6  平行黏结模型强化对比
图 7  Sf -应变关系曲线图
图 8  不同 $S_{\text{f}}^ * $GBM强化模型应力-应变曲线
图 9  GBM强化模型峰值强度、弹性模量随 $S_{\text{f}}^ * $、残余变形的变化曲线
项目 原状试块 预处理试块
σ0u /MPa E0 /GPa $\sigma _{{\rm{Iu}}}^\prime$ /MPa ${E_1}'$ /GPa
试验值 160.1 16.0 174.6 18.3
模拟值 159.9 16.0 175.3 18.6
表 4  原状试块与预处理试块宏观参数试验值与模拟值
图 10  GBM模型与GBM强化模型应力-应变曲线
图 11  预处理试块与GBM强化模型宏观破坏特征
图 12  初始阶段微裂纹分布
图 13  GBM模型峰前不同应力水平微裂纹分布
图 14  GBM强化模型峰前不同应力水平微裂纹分布
图 15  GBM模型峰值应力及峰后阶段微裂纹分布
图 16  GBM强化模型峰值应力及峰后阶段微裂纹分布
图 17  GBM强化模型裂纹数量随应变的变化曲线
图 18  GBM强化模型裂纹分布特征
$\sigma _{{\rm{1}}}^\prime$ na ne
nt ns nt ns
石英 长石 云母 石英 长石
0.5 30 4 0 0 1 0 0
0.6 65 25 3 0 2 0 0
0.7 101 73 15 1 3 3 0
0.8 133 165 36 4 4 16 0
0.9 182 268 75 11 7 31 1
1.0 243 418 224 71 15 73 6
表 5   $S_{\text{f}}^ * $=0.35时GBM强化模型裂纹数量
$\sigma _{{\rm{1}}}^\prime$ na ne
nt ns nt ns
石英 长石 云母 石英 长石
0.5 30 4 0 0 1 0 0
0.6 66 26 3 0 2 0 0
0.7 102 74 18 2 2 3 0
0.8 130 160 37 4 4 13 0
0.9 185 269 89 11 8 32 1
1.0 243 441 239 80 25 77 4
表 6   $S_{\text{f}}^ * $=0.4时GBM强化模型裂纹数量
图 19  破坏裂纹数量与峰值强度随强化系数阈值的变化
1 曹祺, 李文权 开挖扰动下巷道围岩细观力学行为分析[J]. 煤矿安全, 2017, 48 (3): 190- 193
CAO Qi, LI Wen-quan Mesomechanics behavior analysis of surrounding rock under roadway excavation disturbance[J]. Safety in Coal Mines, 2017, 48 (3): 190- 193
doi: 10.13347/j.cnki.mkaq.2017.03.051
2 杨建华, 代金豪, 姚池, 等 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理[J]. 爆炸与冲击, 2022, 42 (3): 138- 149
YANG Jian-hua, DAI Jin-hao, YAO Chi, et al Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion and Shock Waves, 2022, 42 (3): 138- 149
3 尤明庆, 苏承东 大理岩试样循环加载强化作用的试验研究[J]. 固体力学学报, 2008, 29 (1): 66- 72
YOU Ming-qing, SU Cheng-dong Experimental research on strengthening under cyclic loading of marble samples[J]. Chinese Journal of Solid Mechanics, 2008, 29 (1): 66- 72
doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.010
4 徐速超, 冯夏庭, 陈炳瑞 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. 岩土力学, 2009, 30 (10): 2929- 2934
XU Su-chao, FENG Xia-ting, CHEN Bing-rui Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. Rock and Soil Mechanics, 2009, 30 (10): 2929- 2934
doi: 10.3969/j.issn.1000-7598.2009.10.006
5 李春阳, 周宗红, 刘松 花岗岩单轴循环加卸载试验及声发射特性研究[J]. 煤矿机械, 2016, 37 (11): 67- 70
LI Chun-yang, ZHOU Zong-hong, LIU Song Experimental test and acoustic emission characteristics of granite under uniaxial cyclic loading and unloading conditions[J]. Coal Mine Machinery, 2016, 37 (11): 67- 70
doi: 10.13436/j.mkjx.201611027
6 周家文, 杨兴国, 符文熹, 等 脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J]. 岩石力学与工程学报, 2010, 29 (6): 1172- 1183
ZHOU Jia-wen, YANG Xing-guo, FU Wen-xi, et al Experimental test and fracture damage mechanical characteristics of brittle rock under uniaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (6): 1172- 1183
7 姚吉康, 王志亮, 何爱林, 等 循环加卸载下花岗岩强度变形及声发射特征[J]. 水利水运工程学报, 2018, 168 (2): 74- 81
YAO Ji-kang, WANG Zhi-liang, HE Ai-lin, et al Strength and deformation along with acoustic emission characteristics of granite under cyclic loading and unloading[J]. Hydro-Science and Engineering, 2018, 168 (2): 74- 81
doi: 10.16198/j.cnki.1009-640X.2018.02.010
8 JAEGER J C. Brittle fracture of rocks [C]// Proceedings of the eighth symposium on rock mechanics. Baltimore: Port City Press, 1967: 3-57.
9 夏明, 赵崇斌 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33 (2): 327- 338
XIA Ming, ZHAO Chong-bin Dimensional analysis of effects of microscopic parameters on macroscopic parameters for clumpparallel-bond model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (2): 327- 338
doi: 10.13722/j.cnki.jrme.2014.02.008
10 CUNDALL P A, STRACK O A discrete numerical model for granular assemblies[J]. Géotechnique, 2008, 30 (3): 331- 336
11 周健, 池永, 池毓蔚, 等 颗粒流方法及PFC2D程序[J]. 岩土力学, 2000, 21 (3): 80- 83
ZHOU Jian, CHI Yong, CHI Yu-wei, et al The method of particle flow and PFC2D code[J]. Rock and Soil Mechanics, 2000, 21 (3): 80- 83
doi: 10.3969/j.issn.1000-7598.2000.03.020
12 DOP A, PAC B A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (8): 1329- 1364
doi: 10.1016/j.ijrmms.2004.09.011
13 周喻, 高永涛, 吴顺川, 等 等效晶质模型及岩石力学特征细观研究[J]. 岩石力学与工程学报, 2015, 34 (3): 511- 519
ZHOU Yu, GAO Yong-tao, WU Shun-chuan, et al An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 511- 519
doi: 10.13722/j.cnki.jrme.2015.03.008
14 胡训健, 卞康, 谢正勇, 等 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报, 2020, 42 (8): 1540- 1548
HU Xun-jian, BIAN Kang, XIE Zheng-yong, et al Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (8): 1540- 1548
15 SHI Chong, YANG Wen-kun, YANG Jun-xiong, et al Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21 (2): 1- 13
16 ZHOU Jian, LAN Heng-xing, ZHANG Lu-qing, et al Novel grain-based model for simulation of brittle failure of alxa porphyritic granite[J]. Engineering Geology, 2019, 251: 100- 114
doi: 10.1016/j.enggeo.2019.02.005
17 Itasca Consulting Group Inc. PFC, Version 5.0 [M]. Minneapolis: Itasca Consulting Group Inc. , 2014: 1-2.
18 石崇, 张强, 王盛年 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学, 2018, 39 (Suppl.2): 36
SHI Chong, ZHANG Qiang, WANG Sheng-nian Particle Flow Code(PFC5.0)[J]. Rock and Soil Mechanics, 2018, 39 (Suppl.2): 36
19 陈铁民, 陶振宇 岩石粘滑的自锁模型及数值模拟[J]. 西北地震学报, 1993, 15 (1): 39- 44
CHEN Tie-min, TAO Zhen-yu Self-locking model of stick-slip rock and numerical simulation[J]. China Earthquake Engineering Journal, 1993, 15 (1): 39- 44
[1] 郑帅,谭大鹏,李霖,朱吟龙. 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报(工学版), 2019, 53(7): 1237-1251.
[2] 章涵,胡新丽,吴爽爽. 基于傅里叶近似法的S-RM细观损伤过程研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1955-1965.
[3] 董辉, 伍开松, 况雨春, 代茂林. 基于DEM-CFD水力旋流器的水合物浆体分离规律研究[J]. 浙江大学学报(工学版), 2018, 52(9): 1811-1820.
[4] 王强, 胡新丽, 徐迎, 周昌, 徐楚. 软岩土石混合体的击实特性与细观机理研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2295-2305.
[5] 付建新, 宋卫东, 谭玉叶. 岩体力学参数对巷道变形特性的影响程度分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2365-2372.
[6] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[7] 方锡武, 刘振宇, 谭建荣. 基于混合法的二维域颗粒堆积算法[J]. J4, 2011, 45(4): 650-655.
[8] 武锦涛 陈纪忠 阳永荣. 移动床中颗粒运动的微观分析[J]. J4, 2006, 40(5): 864-868.