Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2127-2134    DOI: 10.3785/j.issn.1008-973X.2022.11.003
机械与能源工程     
AUV平面直线航迹跟踪控制算法
叶梦佳1,2(),王宇轩2,王赟2,赖周年3,曹琳琳2,吴大转1,2,*()
1. 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学 能源工程学院,浙江 杭州 310027
3. 浙江大学湖州研究院,浙江 湖州 313000
Straight-line path tracking control algorithm of AUV planar motion
Meng-jia YE1,2(),Yu-xuan WANG2,Yun WANG2,Zhou-nian LAI3,Lin-lin CAO2,Da-zhuan WU1,2,*()
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
3. Institute of Huzhou, Zhejiang University, Huzhou 313000, China
 全文: PDF(1808 KB)   HTML
摘要:

针对自主水下航行器(AUV)在平面直线航迹跟踪过程中的航迹超调问题,设计基于航向航速双闭环运动控制的航迹跟踪控制算法. 跟踪算法以视线导引法(LOS)为基础,设计时变前视距离提高AUV的机动性,并以一阶惯性滤波抑制因航向切换产生期望航向角的阶跃变化. 控制算法采用抗积分饱和PID控制及参数自适应,以增加算法的鲁棒性,并将航向航速控制设计成双闭环,使得 AUV航行时期望航迹段终点的距离偏差实时调整期望航速. 结果表明,此航迹跟踪控制算法根据距离偏差调节实时航速,可使AUV提前减速以低速转向,抗积分饱和可避免航速超调,参数自适应以适应多种航行工况. AUV能准确跟踪期望航迹,最大航迹偏差小于1.0 m,并且大角度转向时可有效减小航迹超调.

关键词: 自主水下航行器航迹跟踪视线导引法抗饱和积分双闭环控制    
Abstract:

A path tracking control algorithm based on the dual closed-loop motion control of heading and speed was designed to solve the overshoot of autonomous underwater vehicles (AUV) in the plane straight-line path tracking problem. The tracking algorithm followed the line-of-sight (LOS) guidance law. The design of the time-varying forward-looking distance was selected to increase the maneuverability of AUV. The first-order inertial filter was used to suppress the step change of the expected heading angle. The control algorithm adopted anti-integral saturation PID control and the parameter self-adaptation were adopted to increase the robustness of the control algorithm. The heading and speed control was designed as a double closed-loop to adjust the AUV speed according to the distance deviation from the end of the desired path. The results show that the path tracking control algorithm adjusts the real-time speed according to the distance deviation, which makes the AUV decelerate in advance and turns at low speed, the anti-integral saturation avoids the speed overshoot and the parameter is adaptive for the variety of condition. The AUV accurately tracks the desired path with a maximum deviation of less than 1.0 m and the tracking overshoot effectively reduces at large turning angles.

Key words: AUV    path tracking    line-of-sight guidance law    anti-integral saturation    double-loop control
收稿日期: 2021-11-26 出版日期: 2022-12-02
CLC:  TP 242  
基金资助: 流体动力与机电系统国家重点实验室主任基金资助项目
通讯作者: 吴大转     E-mail: mengjia_ye@zju.edu.cn;wudazhuan@zju.edu.cn
作者简介: 叶梦佳(1998—),女,硕士生,从事AUV运动控制研究. orcid.org/0000-0003-3872-3899. E-mail: mengjia_ye@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
叶梦佳
王宇轩
王赟
赖周年
曹琳琳
吴大转

引用本文:

叶梦佳,王宇轩,王赟,赖周年,曹琳琳,吴大转. AUV平面直线航迹跟踪控制算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2127-2134.

Meng-jia YE,Yu-xuan WANG,Yun WANG,Zhou-nian LAI,Lin-lin CAO,Da-zhuan WU. Straight-line path tracking control algorithm of AUV planar motion. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2127-2134.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.003        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2127

图 1  AUV平面坐标系示意图
图 2  视线导引原理
图 3  AUV平面直线航迹跟踪控制算法流程图
图 4  AUV航向PD控制框图
图 5  AUV航速PID控制框图
图 6  AUV航向航速双闭环控制框图
图 7  距离双闭环算法中期望航速系数与位置偏差的变化关系
图 8  角度双闭环和距离双闭环航迹跟踪仿真结果对比
图 9  角度双闭环和距离双闭环算法航速变化对比
图 10  角度双闭环和距离双闭环算法电机和舵机输出值对比
1 FOSSEN T I, BREIVIK M, SKJETNE R Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36 (21): 211- 216
doi: 10.1016/S1474-6670(17)37809-6
2 FOSSEN T I, PETTERSEN K Y, GALEAZZI R Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2015, 23 (2): 820- 827
doi: 10.1109/TCST.2014.2338354
3 陈霄, 刘忠, 罗亚松, 等 海洋环境下欠驱动无人艇航迹跟踪控制算法[J]. 哈尔滨工业大学学报, 2018, 50 (10): 110- 117
CHEN Xiao, LIU Zhong, LUO Ya-song, et al Path tracking control algorithm for the underactuated USV in the marine environment[J]. Journal of Harbin Institute of Technology, 2018, 50 (10): 110- 117
doi: 10.11918/j.issn.0367-6234.201709067
4 KIAM H A, CHONG G, YUN L PID control system analysis, design and technology[J]. IEEE Transactions on Control Systems Technology, 2005, 13 (4): 559- 576
doi: 10.1109/TCST.2005.847331
5 王宏健, 陈子印, 贾鹤鸣, 等 具有 PID反馈增益的自主水下航行器反步法变深控制[J]. 控制理论与应用, 2012, 29 (9): 1139- 1145
WANG Hong-jian, CHEN Zi-yin, JIA He-ming, et al Backstepping method with PID gain tuning in diving control of autonomous underwater vehicle[J]. Control Theory and Applications, 2012, 29 (9): 1139- 1145
6 田勇, 王丹, 彭周华, 等 无人水面艇直线航迹跟踪控制器的设计与验证[J]. 大连海事大学学报, 2015, 41 (4): 14- 18
TIAN Yong, WANG Dan, PENG Zhou-hua, et al Design and validation of path tracking controller for USV along straight-lines[J]. Journal of Dalian Maritime University, 2015, 41 (4): 14- 18
doi: 10.16411/j.cnki.issn1006-7736.2015.04.017
7 陈世利, 卫民, 李一博, 等 基于双闭环的矢量推进器的AUV转向控制方法[J]. 天津大学学报:自然科学与工程技术版, 2014, 47 (6): 530- 534
CHEN Shi-li, WEI Min, LI Yi-bo, et al Steering control strategy of AUV with vectored thruster based on double-loop mode[J]. Journal of Tianjin University: Science and Technology, 2014, 47 (6): 530- 534
8 杨超, 郭佳, 张铭钧 基于 RBF神经网络的作业型 AUV自适应终端滑模控制方法及实验研究[J]. 机器人, 2018, 40 (3): 336- 345
YANG Chao, GUO Jia, ZHANG Ming-jun Adaptive terminal sliding mode control method based on RBF neural network for operational AUV and its experimental research[J]. Robot, 2018, 40 (3): 336- 345
9 张凯. 基于反步滑模算法的 AUV三维航迹跟踪控制研究[D]. 大连: 大连海事大学, 2017: 17-43.
ZHANG Kai. Research on three-dimensional trajectory control of an AUV based on backstepping sliding model algorithm [D]. Dalian: Dalian Maritime University, 2017: 17-43.
10 吕厚权, 郑荣, 杨斌, 等 水下自主机器人航向控制算法应用研究[J]. 舰船科学技术, 2020, 42 (2): 108- 114
LV Hou-quan, ZHENG Rong, YANG Bin, et al Application research of heading control algorithm for AUV[J]. Ship Science and Technology, 2020, 42 (2): 108- 114
doi: 10.3404/j.issn.1672-7649.2020.02.021
11 杨清, 宿浩, 唐功友, 等 不确定 AUV系统的鲁棒最优滑模控制[J]. 信息与控制, 2018, 47 (2): 176- 183
YANG Qing, SU Hao, TANG Gong-you, et al Robust optimal sliding mode control for AUV system with uncertainties[J]. Information and Control, 2018, 47 (2): 176- 183
12 齐雪, 张利军, 赵杰梅 Serret-Frenet坐标系下AUV自适应路径跟踪控制[J]. 系统科学与数学, 2016, 36 (11): 1851- 1864
QI Xue, ZHANG Li-jun, ZHAO Jie-mei Adaptive path following control of autonomous underwear vehicles in Serret-Frenet coordinate[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36 (11): 1851- 1864
doi: 10.12341/jssms12955
13 QI X Adaptive coordinated tracking control of multiple autonomous underwater vehicles[J]. Ocean Engineering, 2014, 91: 84- 90
doi: 10.1016/j.oceaneng.2014.08.019
14 王宏健, 陈子印, 贾鹤鸣, 等 基于滤波反步法的欠驱动 AUV三维路径跟踪控制[J]. 自动化学报, 2015, 41 (3): 631- 645
WANG Hong-Jian, CHEN Zi-Yin, JIA He-Ming, et al Three-dimensional path-following control of underactuated autonomous underwater vehicle with command filtered backstepping[J]. Acta Automatica Sinica, 2015, 41 (3): 631- 645
15 SUVHASISH M, BIDYADHAR S Nonlinear H∞ state and output feedback control schemes for an autonomous underwater vehicle in the dive plane [J]. Transactions of the Institute of Measurement and Control, 2018, 40 (6): 2024- 2038
doi: 10.1177/0142331217695671
16 孙巧梅, 陈金国, 余万 基于模糊自适应滑模方法的 AUV轨迹跟踪控制[J]. 舰船科学技术, 2017, 39 (12): 53- 58
SUN Qiao-mei, CHEN Jin-guo, YU Wan Trajectory-tracking control of autonomous underwater vehicles based on fuzzy adaptive sliding mode method[J]. Ship Science and Technology, 2017, 39 (12): 53- 58
doi: 10.3404/j.issn.1672-7649.2017.12.012
17 王金强, 王聪, 魏英杰, 等 欠驱动AUV自适应神经网络反步滑模跟踪控制[J]. 华中科技大学学报:自然科学版, 2019, 47 (12): 12- 17
WANG Jin-qiang, WANG Cong, WEI Ying-jie, et al Path following of an underactuated AUV based on adaptive neural network backstepping sliding mode control[J]. Journal of Huazhong University of Science and Technology: Natural Science, 2019, 47 (12): 12- 17
[1] 张国月,曲轶龙,齐冬莲,李冉. 基于重复控制的三电平光伏逆变技术[J]. J4, 2012, 46(7): 1339-1344.