Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1740-1749    DOI: 10.3785/j.issn.1008-973X.2022.09.007
土木工程、交通工程     
海水环境下MICP胶结钙质砂干湿循环试验研究
李艺隆(),国振*(),徐强,李雨杰
浙江大学 建筑工程学院,浙江 杭州 310058
Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment
Yi-long LI(),Zhen GUO*(),Qiang XU,Yu-jie LI
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2670 KB)   HTML
摘要:

为了探究微生物诱导碳酸钙沉积(MICP)在海水环境中胶结钙质砂的适用性与MICP胶结体的耐干湿循环性能,分别在海水与淡水环境中试验MICP胶结钙质砂,并在海水环境中对MICP胶结的钙质砂进行干湿循环. 基于能谱分析(EDS)与X射线衍射(XRD)分析胶结体元素与矿物组成. 通过无侧限抗压强度试验、称重,构建胶结体的力学性质、质量损失与干湿循环的关系,利用扫描电子显微镜(SEM)分析干湿循环弱化机制. 结果表明:海水环境中MICP对钙质砂的胶结效果优于淡水环境;海水环境中MICP胶结的钙质砂体具有比淡水环境中胶结的钙质砂更高的耐干湿循环性能,21次干湿循环后,海水、淡水环境胶结试样的无侧限抗压强度分别下降至原样的30%和7.53%;干湿循环减弱了颗粒表面粗糙度与粒间胶结强度,宏观上表现为MICP胶结的钙质砂体的强度、刚度的降低.

关键词: 微生物诱导碳酸钙沉积(MICP)钙质砂干湿循环海水无侧限抗压强度试验质量损失    
Abstract:

In order to explore the applicability of microbial induced calcium carbonate precipitation (MICP) to cement calcareous sand in seawater environment and the wet-dry cycle resistance of MICP cemented bodies, the calcareous sands were cemented in seawater and freshwater environment respectively, and the wet-dry cycles were carried out in seawater environment. The element and mineral composition of the cemented bodies were analyzed based on the energy dispersive spectroscopy(EDS), X-ray diffraction(XRD). In addition, the relationships between mechanical properties, mass loss and wet-dry cycle were established through unconfined compressive strength test, weighing; and the weakening mechanism of the wet-dry cycle on samples were analyzed by scanning electron microscope (SEM). Results show that, in seawater environment, the cementation effect of MICP on calcareous sand is better than that in freshwater environment. The resistance to wet-dry cycle of calcareous sand cemented in seawater environment is larger than that cemented in freshwater environment. After 21 wet-dry cycles, the strength of cemented calcareous sand in seawater and freshwater environment decreased to 30% and 7.53% of the original samples, respectively. The wet-dry cycle reduces the particle surface roughness and intergranular cementation strength, which is manifested in the reduction of strength and stiffness of cemented calcareous sand in macro-characteristics.

Key words: microbial induced calcium carbonate precipitation (MICP)    calcareous sand    wet-dry cycle    seawater    unconfined compressive strength test    mass loss
收稿日期: 2021-09-18 出版日期: 2022-09-28
CLC:  TU 441  
基金资助: 海南省重大科技计划项目(ZDKJ202019);国家自然科学基金资助项目(51779220,51939010);浙江省自然科学基金资助项目(LHZ19E090003)
通讯作者: 国振     E-mail: longliyilong@163.com;nehzoug@163.com
作者简介: 李艺隆(1997—),男,硕士生,从事岛礁岩土工程研究. orcid.org/0000-0003-2890-3765. E-mail: longliyilong@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李艺隆
国振
徐强
李雨杰

引用本文:

李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.

Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.007        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1740

图 1  试验用钙质砂颗粒级配曲线与电镜照片
图 2  浸泡法胶结示意图
图 3  不同干湿循环次数下各组试样无侧限抗压强度
图 4  不同干湿循环次数下各组试样应力−应变曲线上试样强度发挥至50%时的割线模量
图 5  无侧限抗压强度剩余量、应力−应变曲线上试样强度发挥至50%时的割线模量平均值与干湿循环次数的关系
图 6  不同干湿循环次数下各组强度为中值的试样应力−应变关系曲线
图 7  质量损失率平均值与干湿循环次数的关系
图 8  不同干湿循环次数下SCS表面侵蚀形态
图 9  不同干湿循环次数下SCF表面侵蚀形态
图 10  试样无侧限抗压强度剩余量与质量损失率的关系
试样 w
文石 高镁方解石 方解石 球霰石
钙质砂 78.0 20.6 1.4
SCS 70.8 13.4 10.6 5.2
SCF 59.2 12.5 17.4 10.9
表 1  各组试样主要矿物质量分数
图 11  试样颗粒表面主要元素质量百分比
图 12  各组试样XRD分析结果
图 13  试样颗粒表面碳酸钙结晶形态
图 14  干湿循环前后SCS与SCF的颗粒形态
图 15  试样颗粒表面残留盐分SEM与EDS分析结果
1 朱长歧, 陈海洋, 孟庆山, 等 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35 (7): 1831- 1836
ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35 (7): 1831- 1836
doi: 10.16285/j.rsm.2014.07.005
2 陈海洋, 汪稔, 李建国, 等 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26 (9): 1389- 1392
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26 (9): 1389- 1392
doi: 10.3969/j.issn.1000-7598.2005.09.008
3 XIAO Y, LIU H, XIAO P, et al Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letters, 2016, 6 (3): 199- 204
4 WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea [J]. Engineering Geology, 2011, 120(1–4): 40–47.
5 KOU H L, WU C Z, NI P P, et al Assessment of erosion resistance of biocemented sandy slope subjected to wave actions[J]. Applied Ocean Research, 2020, 105: 102401
doi: 10.1016/j.apor.2020.102401
6 钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Progress in soilreinforcement by microbial grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1537- 1548
doi: 10.16285/j.rsm.2015.06.003
7 裴迪, 刘志明, 胡碧茹, 等 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47 (6): 467- 482
PEI Di, LIU Zhi-ming, HU Bi-ru, et al Progress on mineralization mechanism and application research of Sporosarcina pasteurii [J]. Progress in Biochemistry and Biophysics, 2020, 47 (6): 467- 482
doi: 10.16476/j.pibb.2020.0012
8 GOMEZ M G, DEJONG J T, ANDERSON C M Effect of bio-cementation on geophysical and cone penetration measurements in sands[J]. Canadian Geotechnical Journal, 2018, 55 (11): 1513- 1532
doi: 10.1139/cgj-2017-0170
9 刘汉龙, 马国梁, 肖杨, 等 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1 (1): 26- 31
LIU Han-long, MA Guo-liang, XIAO Yang, et al In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1 (1): 26- 31
10 SALIFU E, MACLACHLAN E, IYER K R, et al Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation[J]. Engineering Geology, 2016, 201: 96- 105
doi: 10.1016/j.enggeo.2015.12.027
11 张鑫磊, 陈育民, 张喆, 等 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42 (6): 1023- 1031
ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1023- 1031
12 刘士雨, 俞缙, 刘文强, 等 基于MICP的珊瑚砂砂浆裂缝自修复新型细菌载体[J]. 建筑材料学报, 2021, 24 (4): 687- 693
LIU Shi-yu, YU Jin, LIU Wen-qiang, et al New bacterial carrier for the crack self-healing in coral sand mortar based on MICP[J]. Journal of Building Materials, 2021, 24 (4): 687- 693
doi: 10.3969/j.issn.1007-9629.2021.04.003
13 陈敏洁, 李亚飞, 李博文, 等 微生物诱导碳酸钙沉淀对土壤中Pb污染稳定化的效果研究[J]. 有色金属工程, 2020, 10 (12): 128- 134
CHEN Min-jie, LI Ya-fei, LI Bowen, et al Effect of stabilization of Pb-pollution in soil based on microbial induced calcite precipitation[J]. Nonferrous Metals Engineering, 2020, 10 (12): 128- 134
doi: 10.3969/j.issn.2095-1744.2020.12.018
14 岳建伟, 邢旋旋, 孔庆梅, 等 MICP改良灰浆物理性能的实验研究[J]. 河南大学学报: 自然科学版, 2021, 51 (4): 455- 465
YUE Jian-wei, XING Xuan-xuan, KONG Qingmei, et al Experimental study on the physical properties of MICP improved mortar[J]. Journal of Henan University: Natural Science, 2021, 51 (4): 455- 465
15 MENG H, GAO Y F, HE J, et al Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests[J]. Geoderma, 2021, 383: 114723
doi: 10.1016/j.geoderma.2020.114723
16 LIU L, LIU H L, ARMIN W S, et al Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56 (10): 1502- 1513
doi: 10.1139/cgj-2018-0007
17 LI Y J, GUO Z, WANG L Z, et al Interface shear behavior between MICP-treated calcareous sand and steel[J]. Journal of Materials in Civil Engineering, 2021, 33 (2): 04020455
doi: 10.1061/(ASCE)MT.1943-5533.0003549
18 方祥位, 申春妮, 楚剑, 等 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36 (10): 2773- 2779
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36 (10): 2773- 2779
doi: 10.16285/j.rsm.2015.10.005
19 方祥位, 李晶鑫, 李捷, 等 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39 (Suppl.1): 1- 8
FANG Xiang-wei, LI Jing-xin, LI Jie, et al Study of triaxial compression test and damage constitutive model of biocemented coral sand columns[J]. Rock and Soil Mechanics, 2018, 39 (Suppl.1): 1- 8
doi: 10.16285/j.rsm.2017.2101
20 方祥位, 李晶鑫, 李捷, 等 珊瑚砂微生物固化体单轴损伤本构模型[J]. 地下空间与工程学报, 2018, 14 (5): 1234- 1239
FANG Xiang-wei, LI Jing-xin, LI Jie, et al Damage constitutive model of biocemented coral sand columns under unconfined compression[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (5): 1234- 1239
21 刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
22 肖 鹏, 刘汉龙, 张宇, 等 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43 (3): 511- 519
XIAO Peng, LIU Han-long, ZHANG Yu, et al Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (3): 511- 519
23 章懿涛, 方祥位, 胡丰慧, 等 不同胶结程度MICP固化珊瑚砂的无侧限压缩离散元分析[J]. 土木与环境工程学报, 2022, 44 (4): 18- 26
ZHANG Yi-tao, FANG Xiang-wei, HU Feng-hui, et al Discrete element analysis of MICP solidified coral sand with different cementation degree under unconfined compression test[J]. Journal of Civil and Environmental Engineering, 2022, 44 (4): 18- 26
24 李昊, 唐朝生, 刘博, 等 模拟海水环境下MICP 固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42 (10): 1931- 1939
LI Hao, TANG Chao-sheng, LIU Bo, et al Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (10): 1931- 1939
25 丁绚晨, 陈育民, 张鑫磊 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报: 工学版, 2020, 54 (9): 1690- 1696
DING Xuan-chen, CHEN Yu-min, ZHANG Xin-lei Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (9): 1690- 1696
26 彭劼, 田艳梅, 杨建贵 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39 (1): 58- 62
PENG Jie, TIAN Yan-mei, YANG Jian-gui Experiments of coral sand reinforcement using MICP in seawater environment[J]. Advances in Science and Technology of Water Resources, 2019, 39 (1): 58- 62
27 董博文, 刘士雨, 俞缙, 等 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42 (4): 1104- 1114
DONG Bo-wen, LIU Shi-yu, YU Jin, et al Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42 (4): 1104- 1114
28 王燕星, 李驰, 高利平, 等 低磁场核磁共振测定盐环境下微生物诱导碳酸钙沉积固化材料的孔隙结构[J]. 工业建筑, 2020, 50 (12): 1- 7
WANG Yan-xing, LI Chi, GAO Li-ping, et al Determination on pore structure of microbial induced mineralization materials in salt environment by NMR[J]. Industrial Construction, 2020, 50 (12): 1- 7
doi: 10.13204/j.gyjzG19092502
29 李红昌. 微生物诱导碳酸钙沉淀固化金属尾矿砂[D]. 合肥: 合肥工业大学, 2020: 25.
LI Hong-chang. Microbial induction of carbonate precipitation to solidify tailings [D]. Hefei: Hefei University of Technology, 2020: 25.
30 秦骁. 微生物诱导矿化材料耐候性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2017: 34.
QIN Xiao. Experimental research on the weatherability resistance of new material based on MICP[D]. Hohhot: Inner Mongolia University of Technology, 2017: 34.
31 GOWTHAMAN S. Experimental study on near-surface stabilization of slopes in cold region using bio-mediated geotechnical engineering [D]. Sapporo: Hokkaido University, 2020: 119-121.
32 LIU S H, WEN K J, ARMWOOD C, et al Enhancement of MICP-treated sandy soils against environmental deterioration[J]. Journal of Materials in Civil Engineering, 2019, 31 (2): 04019294
33 DEJONG J T, FRITZGES M B, NÜSSLEIN K Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (11): 1381- 1392
doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
34 LI Y J, GUO Z, WANG L Z, et al Shear resistance of MICP cementing material at the interface between calcareous sand and steel[J]. Materials Letters, 2020, 274: 128009
doi: 10.1016/j.matlet.2020.128009
35 LIU S H, DU K, WEN K J, et al Sandy soil improvement through microbially induced calcite precipitation (MICP) by immersion[J]. Journal of Visualized Experiments, 2019, (151): e60059
36 STANLEY, STEVEN M Effects of global seawater chemistry on biomineralization: past, present, and future[J]. Chemical Reviews, 2008, 108 (11): 4483- 4498
doi: 10.1021/cr800233u
37 马瑞男, 郭红仙, 陈溪海, 等 镁离子对微生物砂浆强度影响的研究[J]. 工业建筑, 2018, 48 (10): 121- 125
MA Rui-nan, GUO Hong-xian, CHEN Xi-hai, et al Influence of magnesium ion on the strength of microbial mortar[J]. Industrial Construction, 2018, 48 (10): 121- 125
doi: 10.13204/j.gyjz201810020
38 荣辉, 钱春香, 李龙志 镁添加剂对微生物水泥基材料力学性能的影响[J]. 硅酸盐学报, 2012, 40 (11): 1564- 1569
RONG Hui, QIAN Chun-xiang, LI Long-zhi Influence of magnesium additive on mechanical properties of microbe cementitious material[J]. Journal of the Chinese Ceramic Society, 2012, 40 (11): 1564- 1569
doi: 10.14062/j.issn.0454-5648.2012.11.007
39 张国城, 童华炜, 彭秋旺, 等 镁的引入对微生物加固砂土试验的影响[J]. 科学技术与工程, 2012, 40 (11): 1564- 1569
ZHANG Guo-cheng, TONG Hua-wei, PENG Qiu-wang, et al The effect of magnesium on the experiment of microbial reinforcement of sand[J]. Journal of the Chinese Ceramic Society, 2012, 40 (11): 1564- 1569
40 MILOVANOVIC M, UNRUH M T, BRANDT V, et al Forming amorphous calcium carbonate within hydrogels by enzyme-induced mineralization in the presence of N-(phosphonomethyl) glycine [J]. Journal of Colloid and Interface Science, 2020, 579: 357- 368
doi: 10.1016/j.jcis.2020.06.047
41 CHENG L, SHAHIN M A, CORD-RUWISCH R Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Geotechnique, 2014, 64 (12): 1010- 1013
doi: 10.1680/geot.14.T.025
42 雷云 球霰石型碳酸钙的研究进展[J]. 长江大学学报: 自然版, 2014, 11 (34): 35- 39
LEI Yun Research progress of vaterite type calcium carbonate[J]. Journal of Yangtze University: Natural Science Edition, 2014, 11 (34): 35- 39
[1] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[2] 刘志明,彭劼,李杰,宋恩润. 超声波提高微生物固化砂土效果的试验研究[J]. 浙江大学学报(工学版), 2020, 54(7): 1411-1417.
[3] 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232.
[4] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[5] 周炳海, 刘子龙. 考虑质量损失的退化系统维护建模[J]. 浙江大学学报(工学版), 2016, 50(12): 2270-2276.
[6] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[7] 董宜森,王海龙,金伟良. 硫酸盐侵蚀环境下混凝土双K断裂参数试验研究[J]. J4, 2012, 46(1): 58-63.
[8] 翟江,周华. 海水淡化轴向柱塞泵静压支承滑靴副的
流固耦合分析
[J]. J4, 2011, 45(11): 1889-1894.
[9] 卢振永, 金伟良, 王海龙, 等. 人工气候模拟加速试验的相似性设计[J]. J4, 2009, 43(6): 1071-1076.
[10] 殷建军 余忠华 李兴林 王兆卫. 基于Kalman滤波的过程调节与质量监控方法[J]. J4, 2008, 42(8): 1419-1422.
[11] 曹衍龙 杨将新 吴昭同 吴立群. 基于模糊质量损失的公差稳健设计方法的研究[J]. J4, 2004, 38(1): 1-4.