Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2323-2333    DOI: 10.3785/j.issn.1008-973X.2021.12.012
机械工程     
陈垃圾滚筒筛运动模式与筛分效率优化
柯瀚1,2(),兰盛泽1,2,张美兰3,胡杰1,2,*(),徐兴1,2,陈云敏1,2
1. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058
2. 浙江大学 岩土工程研究所, 浙江 杭州 310058
3. 上海老港废弃物处置有限公司, 上海 201302
Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency
Han KE1,2(),Sheng-ze LAN1,2,Mei-lan ZHANG3,Jie HU1,2,*(),Xing XU1,2,Yun-min CHEN1,2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Shanghai Laogang Waste Disposal Limited Company, Shanghai 201302, China
 全文: PDF(1863 KB)   HTML
摘要:

推导陈垃圾在滚筒筛中的运动方程并求数值解,按最大位置角将陈垃圾运动模式划分成滚落、抛落、圆周运动,给出不同筛筒转速、半径、动摩擦因数下的运动模式判别云图. 滚筒筛试验结果显示,陈垃圾运动的最大位置角随转速的升高先增大后不变,转速超过50 r/min后垃圾进行圆周运动. 陈垃圾滚筒筛的筛分效率随转速增大呈先升后降的趋势,随抛落差的增大呈持续上升的趋势,随着原料水的质量分数的增加呈下降的趋势. 基于试验结果,给出滚筒筛最优转速取值云图,在实际工程中可根据垃圾动摩擦因数及滚筒半径选择最优转速,同时减小水的质量分数以提高筛分效率.

关键词: 滚筒筛运动模式最大位置角最优转速筛分效率    
Abstract:

The motion equation of municipal solid waste (MSW) in trommel was derived and solved numerically. The MSW motion pattern was divided into three categories according to the maximum position angle: cascade action, cataract action and circular action. The discriminant contour maps of the motion pattern under different rotating speed, radius and kinetic friction coefficient were given. The Trommel experiments indicate that the maximum position angle of the MSW motion increases first, and then stays stable with the increase of the rotating speed. The MSW enters circular action after the rotating speed reaches 50 r/min. The screening efficiency of trommel increases at first and then decreases with the increase of rotating speed, continues to increase with the increase of drop, and decreases with the increase of water mass fraction. The contour map of the optimal rotational speed with the trommel was given based on the experiment results. In specific projects, optimal rotating speed can be selected according to the kinetic friction coefficient of MSW and the trommel radius, and the water mass fraction should be reduced to improve the screening efficiency.

Key words: trommel    motion pattern    maximum position angle    optimal rotational speed    screening efficiency
收稿日期: 2021-01-02 出版日期: 2021-12-31
CLC:  TU 411  
基金资助: 国家重点研发计划资助项目(2019YFC1806000);国家自然科学基金资助项目(52108348);老港综合填埋场可持续填埋研究和工艺示范资助项目(2018-C/LG-104);中国博士后科学基金资助项目(2021M692836)
通讯作者: 胡杰     E-mail: boske@126.com;hujie1993@zju.edu.cn
作者简介: 柯瀚(1975—),男,教授,从事环境土工研究. orcid.org/0000-0002-9809-3916. E-mail: boske@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
柯瀚
兰盛泽
张美兰
胡杰
徐兴
陈云敏

引用本文:

柯瀚,兰盛泽,张美兰,胡杰,徐兴,陈云敏. 陈垃圾滚筒筛运动模式与筛分效率优化[J]. 浙江大学学报(工学版), 2021, 55(12): 2323-2333.

Han KE,Sheng-ze LAN,Mei-lan ZHANG,Jie HU,Xing XU,Yun-min CHEN. Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2323-2333.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.012        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2323

运动模式 δmax/(°) nt/(r·min?1) 物料运动特点 η
滚落 [0, 90] 较低 物料在水平线之下滑动、
涌落,物料混合不充分,不易使中间层物料翻向筛孔
抛落 (90, 180) 足够高,但小于临界转速 物料先在圆周上提升,
越过一定高度后被
抛出,撞击筛面
得以分散
圆周 [180, 360] 大于临界转速 物料一直附在筒壁上,
内部相对运动少,
大部分细物料不易筛出
表 1  滚筒筛中物料不同运动模式的运动特点
图 1  滚筒筛中物料的3种运动模式
图 2  滚筒筛圆周上物料受力分析
阶段 δ au aD aT vTs 运动控制方程
I 0°~δ0 μ (gcos δ+v2/R) gsin δ >0 0 x=F1(t)
II δ0~δ1 aS gsin δ 0 ntR x=xδ0+vδ0(t)
III >δ1 μ (gcos δ+v2/R) gsin δ <0 ntR x=F1(t)
表 2  滚筒筛转速不足时单元体运动阶段表
图 3  标准工况下陈垃圾运动数值解
图 4  标准工况下各位置角与摩擦因数关系
图 5  一般工况下滚筒筛转速不足时陈垃圾运动数值解
图 6  最大角云图与运动模式划分
图 7  滚筒筛实物图
图 8  陈垃圾颗粒级配
图 9  室内试验最大角记录方法
图 10  筛分原料与筛分产物
图 11  最大角与滚筒筛转速关系
图 12  筛分效率与滚筒筛转速关系
图 13  筛分效率与抛落差关系
图 14  滚筒筛最优转速取值图
图 15  筛分效率与水的质量分数关系
1 陈云敏, 刘晓成, 徐文杰, 等 填埋生活垃圾稳定化特征与可开采性分析: 以我国第一代卫生填埋场为例[J]. 中国科学:技术科学, 2019, 49 (2): 199- 211
CHEN Yun-min, LIU Xiao-cheng, XU Wen-jie, et al Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica: Technologica, 2019, 49 (2): 199- 211
doi: 10.1360/N092018-00140
2 中华人民共和国国家统计局. 国家数据: 年度数据[DB/OL]. [2020-12-13]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
3 HOGLAND W Remediation of an old landsfill site[J]. Environmental Science and Pollution Research, 2002, 9: 49- 54
doi: 10.1007/BF02987426
4 KROOK J, BAAS L Getting serious about mining the technosphere: a review of recent landfill mining and urban mining research[J]. Journal of Cleaner Production, 2013, 55 (14): 1- 9
5 JAIN P, TOWNSEND T G, JOHNSON P Case study of landfill reclamation at a Florida landfill site[J]. Waste Management, 2013, 33 (1): 109- 116
doi: 10.1016/j.wasman.2012.09.011
6 FORSTER G A. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste [M]. Lancaster: National Renewable Energy Laboratory, 1995: 1-125.
7 ASHKIKI A R, FELSKE C, MCCARTNEY D Impacts of seasonal variation and operating parameters on double-stage trommel performance[J]. Waste Management, 2019, 86: 36- 48
doi: 10.1016/j.wasman.2019.01.026
8 赵先. 陈垃圾开采回用工程的综合效益评价研究[D]. 武汉: 华中科技大学, 2008: 1-51.
ZHAO Xian. A study on integrate-benefit evaluation of landfill mining project [D]. Wuhan: Huazhong University of Science and Technology, 2008: 1-51.
9 李兵, 赵由才, 施庆燕, 等 上海市生活垃圾分选模式研究[J]. 同济大学学报:自然科学版, 2007, (4): 507- 510
LI Bing, ZHAO You-cai, SHI Qing-yan, et al State-of-the-art separation mode for municipal solid wastes in Shanghai[J]. Journal of Tongji University: Natural Science, 2007, (4): 507- 510
doi: 10.3321/j.issn:0253-374X.2007.04.015
10 WHEELER P A, BARTON J R, NEW R An empirical approach to the design of trommel screens for fine screening of domestic refuse[J]. Resources, Conservation and Recycling, 1989, 2 (4): 261- 273
doi: 10.1016/0921-3449(89)90003-7
11 黄楚雨, 韩华, 康敏娟, 等 非正规垃圾堆放点垃圾质量及筛分产物比例精准勘测方法研究[J]. 环境卫生工程, 2020, 28 (5): 33- 37
HUANG Chu-yu, HAN Hua, KANG Min-juan, et al Accurate survey method study of waste quality and screening product proportion in informal waste dump sites[J]. Environmental Sanitation Engineering, 2020, 28 (5): 33- 37
12 ALTER H, GAVIS J, RENARD M L Design models of trommels for resource recovery processing[J]. Resources and Conservation, 1981, 6 (3/4): 223- 240
13 GLAUB J C, JONES D B, SAVAGE G M. Design and use of trommel screens for processing municipal solid waste [C]// Proceedings of ASME National Waste Processing Conference. New York: [s. n.], 1982: 447-457.
14 STESSEL R I A new trommel model[J]. Resources, Conservation and Recycling, 1991, 6 (1): 1- 22
doi: 10.1016/0921-3449(91)90002-6
15 MELLMANN J The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118 (3): 251- 270
doi: 10.1016/S0032-5910(00)00402-2
16 唐红侠, 赵由才 滚筒筛筛分生活垃圾的理论研究[J]. 环境工程学报, 2007, (12): 124- 127
TANG Hong-xia, ZHAO You-cai Research on theories of the trommel screen separating municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2007, (12): 124- 127
doi: 10.3969/j.issn.1673-9108.2007.12.026
17 李兵. 生活垃圾深度分选及设备优化组合技术研究[D]. 上海: 同济大学, 2006: 1-155.
LI Bing. Integrated mechanical separation and parameter optimization for municipal solid wastes [D]. Shanghai: Tongji University, 2006: 1-155.
18 张大卫. 用于粗煤泥脱水脱泥滚筒筛的研制及其性能试验研究[D]. 太原: 太原理工大学, 2015: 1-89.
ZHANG Da-wei. The development and study on the trommel screen used for dewatering and desliming of coal slime [D]. Taiyuan: Taiyuan University of Technology, 2015: 1-89.
19 肖嘉. 基于EEP法的线法二阶常微分方程组有限元自适应分析[D]. 北京: 清华大学, 2009: 1-152.
XIAO Jia. Adaptive FEM analysis of second order ODEs of FEMOL based on EEP super-convergent method [D]. Beijing: Tsinghua University, 2009: 1-152.
20 夏敦行. 二阶变系数线性微分方程的解法[D]. 武汉: 武汉科技大学, 2009: 1-37.
XIA Dun-xing. Solution of second order variable coefficients linear differential equation [D]. Wuhan: Wuhan University of Science and Technology, 2009: 1-37.
21 王冠, 霍丽丽, 赵立欣, 等 秸秆类生物质原料筛分除杂试验及滚筒筛改进[J]. 农业工程学报, 2016, 32 (13): 218- 222
WANG Guan, HUO Lili, ZHAO Lixin, et al Screening of biomass straw materials and improvement of feedstock equipment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (13): 218- 222
doi: 10.11975/j.issn.1002-6819.2016.13.031
22 TURES G L. A guide to implementing reclamation processes at department of defense municipal solid waste and construction debris landfills [D]. Montgomery: Air Force Institute of Technology, 2007: 1-81.
23 MÖNKÄRE T J, PALMROTH M R T, RINTALA J A Characterization of fine fraction mined from two Finnish landfills[J]. Waste Management, 2016, 47: 34- 39
doi: 10.1016/j.wasman.2015.02.034
24 张恩广. 筛分破碎及脱水设备 [M]. 北京: 煤炭工业出版社, 1989: 22-23.
25 煤炭部选煤设计研究院情报室. 选煤技术文集 分离效率[M]. 北京: 煤炭工业出版社, 1980: 27-111.
26 张钰. 煤泥脱水筛分滚筒筛性能试验研究与离散元模拟[D]. 太原: 太原理工大学, 2016: 1-68.
ZHANG Yu. Experimental study and discrete element simulation of coal slime dewatering sieving drum screen’s performance [D]. Taiyuan: Taiyuan University of Technology, 2016: 1-68.
[1] 刘磊,杨鹏,刘作军. 基于多源信息和粒子群优化算法的下肢运动模式识别[J]. 浙江大学学报(工学版), 2015, 49(3): 439-447.