Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 866-874    DOI: 10.3785/j.issn.1008-973X.2021.05.007
机械工程     
S型桨叶捕能消波浮式防波堤仿真及试验研究
黄方平1,2(),龚国芳1,杨灿军1,2,杨华勇1
1. 浙江大学 机械工程学院,浙江 杭州 310027
2. 浙大宁波理工学院,浙江 宁波 315100
Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade
Fang-ping HUANG1,2(),Guo-fang GONG1,Can-jun YANG1,2,Hua-yong YANG1
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China
 全文: PDF(1289 KB)   HTML
摘要:

为了促进开放海域海养殖装备智能化、无人值守化发展,解决离岸养殖装备自主供能以及安全防护问题,针对所提出的Savonius型(S型)桨叶捕能消波式浮式防波堤,建立二维波浪数值水池,搭建物理水槽试验系统和海试系统,通过仿真和试验研究系统在不同结构参数下的水动力学特性,分析探究相对间距、相对入水深度、波陡对系统捕能消波性能的影响. 研究结果表明:该防波堤系统能同时进行捕能和消波,其捕能性能随着波陡的增加而增加,在周期1.6 s时捕能效果最好;消波性能随相对间距的增加而变好,透射系数为0.2~0.8,消波效果显著. 系统捕能与消波性能存在相互影响,多数情况下两者不能同时达到最佳. 海试运行测试验证了该型防波堤的捕能消波效果.

关键词: 浮式防波堤S型桨叶捕能消波透射系数水动力性能    
Abstract:

An energy-capturing and wave-dissipating floating breakwater with Savonius type (S type) blade was proposed, in order to promote the intelligent and unattended development of marine aquaculture equipment in open sea area, and to solve the problems of independent energy supply and safety protection?of offshore aquaculture equipment. A two-dimensional wave numerical pool was established, the physical tank test system and the sea test system were built. The hydrodynamic characteristics of the system under different structural parameters were studied by simulation and experiment, and the effects of relative spacing, relative depth of water entry and wave stepness?on the energy capture and wave dissipation performance of the system were analyzed. Results showed that the breakwater system can simultaneously capture energy and eliminate waves, the energy capture performance of the breakwater system increased with the increase of wave steepness, the energy capture effect was the best when the period was 1.6 s, and the wave dissipation performance became better with the increase of relative spacing. The transmission coefficient fluctuated in the range of 0.2~0.8, and the wave dissipation effect was remarkable. In most cases, the energy capture and the wave dissipation performance of the system can not reach the best at the same time. The sea trial operation test verifies the energy capture and wave dissipation effect of the floating breakwater system.

Key words: floating breakwater    S type blade    energy-capturing and wave-dissipating    transmission coefficient    hydrodynamic performance
收稿日期: 2020-07-24 出版日期: 2021-06-10
CLC:  TK 730.7  
基金资助: 国家自然科学基金资助项目(51605431);宁波市重大科技攻关资助项目(2015C110015)
作者简介: 黄方平(1973—),男,副教授,硕士,从事海洋机电装备研究. orcid.org/0000-0002-7140-5422. E-mail: hfp618@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄方平
龚国芳
杨灿军
杨华勇

引用本文:

黄方平,龚国芳,杨灿军,杨华勇. S型桨叶捕能消波浮式防波堤仿真及试验研究[J]. 浙江大学学报(工学版), 2021, 55(5): 866-874.

Fang-ping HUANG,Guo-fang GONG,Can-jun YANG,Hua-yong YANG. Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 866-874.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.007        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/866

图 1  二级S型桨叶三维结构
图 2  浮式防波堤三维结构
参数 数值/m 参数 数值/m
浮管直径 0.33 叶片半径 0.15
浮管间距 0.65 桨叶高 0.61
浮堤长度 3 桨叶间隙 0.3
桨叶直径 0.5 端板直径 0.5
表 1  浮式防波堤几何特征
参数 数值 单位
水深 2 m
吃水深度 1.7 m
HDPE浮体密度 0.95 kg/m3
桨叶排水量 10 kg
桨叶转动惯量 (0.337, 0.337, 0.160) kg·m2
表 2  浮式防波堤水动力参数表
图 3  浮式防波堤网格划分
图 4  浮式防波堤仿真实验模型
图 5  不同相对间距的仿真实验曲线
图 6  不同相对入水深度的仿真实验曲线
图 7  不同波陡的仿真实验曲线
图 10  浮式防波堤试验测试系统
图 8  浮式防波堤试验布置示意图
图 9  浮式防波堤物理试验模型
图 11  浮式防波堤试验现场
参数名称 符号 研究变量 单位
入水深度 D 0.70、0.75、0.80 m
堤宽 W 0.6、0.7、0.8 m
波高 h 0.09、0.14、0.19、0.24 m
波长 λ 2.186、2.250、2.377 m
波浪周期 S 1.5、1.6、1.7 s
相对入水深度 D/λ 0.294、0.311、0.316;0.320、0.333、
0.337;0.343、0.356、0.366
?
相对间距 W/λ 0.252、0.267、0.274;0.290、0.311、
0.320;0.356、0.366、0.367
?
波陡 h/λ 0.037、0.04、0.041;0.059、0.062、0.064;0.080、0.084、0.087;0.101、0.107、0.109 ?
表 3  浮式防波堤试验组次数据
图 12  不同相对间距的捕能消波曲线
图 13  不同相对入水深度的捕能消波曲线
图 14  不同波陡的捕能消波曲线
图 15  海试防波堤实物结构
图 16  浮式防波堤海试地点
图 17  防波堤海试现场捕能消波实况
工况 h /m T /s Ct n /(r·min?1 N /(N·m) P/W
1 0.8 3 0.568 19.3 429.0 867
2 0.8 4 0.613 15.2 573.0 912
3 0.8 5 0.642 11.8 772.0 954
4 1.2 4 0.607 15.8 542.1 897
5 1.2 5 0.707 12.6 775.3 1023
6 1.2 6 0.700 10.2 985.8 1053
7 1.5 4 0.689 15.2 818.6 1303
8 1.5 5 0.664 12.3 1001.5 1290
9 1.8 6 0.687 9.8 1245.3 1278
10 1.8 5 0.651 11.8 1053.7 1302
11 2.2 6 0.708 9.8 1290.2 1324
12 2.2 7 0.753 8.5 1575.4 1414
表 4  海试数据表
图 18  海试防波堤捕能消波性能曲线
1 SHIH R S, WENG W K, CHOU C R The performance characteristics of inclined highly previous pipe breakwaters[J]. Ocean Engineering, 2015, 100: 54- 66
doi: 10.1016/j.oceaneng.2015.03.015
2 WANG H, XU H, LIU P Experimental study on the dissipation characteristics of curtain-type flexible floating breakwater[J]. Journal of Coastal Research, 2015, 73: 410- 414
doi: 10.2112/SI73-072.1
3 SYED S A, MANI J S. Performance of multiple pontoons floating breakwater a numerical approach [C]// 6th International Conference on Civil Engineering in the Oceans. Baltimore: American Society of Civil Engineers, 2005: 342-355.
4 RAHMAN A, MIAUTANI N, KAWASAKI K Numerical modeling of dynamic responses and mooring forces of submerged floating breakwater[J]. Coastal Engineering, 2006, 53: 799- 815
doi: 10.1016/j.coastaleng.2006.04.001
5 王明玉, 吴静萍, 关超, 等 矩形箱柔性膜组合体透射性能的试验研究[J]. 武汉理工大学学报: 交通科学与工程版, 2019, 43 (5): 914- 919
WANG Ming-yu, WU Jing-ping, GUAN Chao, et al Experimental study on transmission performance of rectangular box flexible membrane assembly[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2019, 43 (5): 914- 919
doi: 10.3963/j.issn.2095-3844.2019.05.023
6 ATILLA B Experimental study of a sloping float breakwater[J]. Ocean Engineering, 2000, 27: 445- 453
doi: 10.1016/S0029-8018(98)00080-8
7 王鹏, 邓争志, 王辰, 等 振荡水柱式防波堤的水动力特性[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2335- 2341
WANG Peng, DENG Zheng-zhi, WANG Chen, et al Hydrodynamic characteristics of oscillating watercolumn type breakwater[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2335- 2341
doi: 10.3785/j.issn.1008-973X.2019.12.010
8 姚建均, 李凤甡, 王贤成, 等 Savonius水轮机减流特性数值模拟研究[J]. 哈尔滨工程大学学报, 2020, (6): 1- 8
YAO Jian-jun, LI Feng-shen, WANG Xian-cheng, et al Numerical simulation study of the Savonius turbine on the current reduction characteristics[J]. Journal of Harbin Engineering University, 2020, (6): 1- 8
9 姚建均, 李凤甡, 陈俊华, 等 垂直轴阻力型Savonius水轮机发展现状[J]. 哈尔滨工程大学学报, 2019, 41 (2): 298- 308
YAO Jian-jun, LI Feng-shen, CHEN Jun-hua, et al Research on a vertical-axis drag-type Savonius hydrokinetic turbine[J]. Journal of Harbin Engineering University, 2019, 41 (2): 298- 308
10 JI C Y, BIAN X Q, CHENG Y, et al Experimental study of hydrodynamic performance for double-row rectangular floating breakwaters with porous plates[J]. Ships and Offshore Structures, 2019, 14 (7): 737- 746
doi: 10.1080/17445302.2018.1558521
11 郑仁诗. 风力发电与浮式防波堤一体化概念设计及水动力性能研究[D]. 镇江: 江苏科技大学, 2019.
ZHENG Ren-shi. Design and hydrodynamic performance study of integrated floating breakwater and wind power generation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
12 葛聪. 较长周期波浪条件下新型浮笩式防波堤消浪性能试验研究[D]. 大连: 大连理工大学, 2019.
GE Cong. Experimental study on performance of raft floating breakwater under the action of relatively long period waves[D]. Dalian: Dalian University of Technology, 2019.
13 王世明, 李泽宇, 申玉, 等 一种基于海浪发电的浮式消波堤设计与试验研究[J]. 水利水电技术, 2019, 50 (7): 216- 221
WANG Shi-ming, LI Ze-yu, SHEN Yu, et al Design and experimental study of a floating breakout based on wave power generation[J]. Water Resources and Hydropower Engineering, 2019, 50 (7): 216- 221
14 卞向前. 新型水轮机式浮式防波堤设计与分析[D]. 镇江: 江苏科技大学, 2019.
BIAN Xiang-qian. Design and analysis of a new type floating breakwater: water turbine floating breakwater[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
15 ZHANG Y, LI M, ZHAO X, et al The effect of the coastal reflection on the performance of a floating breakwater-WEC system[J]. Applied Ocean Research, 2020, 100: 1- 9
16 QU K, SUN W Y, KRAATZ S, et al Effects of floating breakwater on hydrodynamic load of low-lying bridge deck under impact of cnoidal wave[J]. Ocean Engineering, 2020, 203: 1- 18
17 ZHANG H M, DING X C, ZHOU B Z, et al Hydrodynamic performance study of wave energy-type floating breakwater[J]. Journal of Marine Science and Application, 2019, 18 (1): 64- 71
doi: 10.1007/s11804-019-00064-y
18 余洁, 陈俊华, 姚建均, 等 新型浮式防波堤水动力性能数值研究[J]. 海洋工程, 2019, 37 (6): 62- 73
YU Jie, CHEN Jun-hua, YAO Jian-jun, et al Numerical research on the hydrodynamic performance of a new-type floating breakwater[J]. The Ocean Engineering, 2019, 37 (6): 62- 73
19 鲍灵杰, 彭天好, 黄方平, 等 新型捕能消波浮式防波堤数值模拟与试验研究[J]. 水运工程, 2020, (4): 9- 14
BAO Ling-jie, PENG Tian-hao, HUANG Fang-ping, et al Numerical simulation and experimental study on a new type of energy absorption and wave elimination floating breakwater[J]. Port and Waterway Engineering, 2020, (4): 9- 14
doi: 10.3969/j.issn.1002-4972.2020.04.002
20 刘崇期, 陈兵, 胡涛 兼具波浪能转换功能的双浮式防波堤性能研究[J]. 水运工程, 2019, (7): 44- 48
LIU Chong-qi, CHEN Bing, HU Tao, et al Study on performance of double floating breakwater with wave energy conversion function[J]. Port and Waterway Engineering, 2019, (7): 44- 48
doi: 10.3969/j.issn.1002-4972.2019.07.009
[1] 王鹏,邓争志,王辰,任翔. 振荡水柱式防波堤的水动力特性[J]. 浙江大学学报(工学版), 2019, 53(12): 2335-2341.
[2] 钟崴,杨志群,宋冬根,胡继光,童水光. 闪速炼铜余热锅炉辐射冷却室水动力性能设计[J]. J4, 2013, 47(11): 1970-1975.
[3] 辛小鹏,邵雪明,邓见,李伟. 串列布置双转子海流机水动力性能预测[J]. J4, 2011, 45(7): 1227-1231.