Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 875-886    DOI: 10.3785/j.issn.1008-973X.2021.05.008
机械工程     
齿轮箱飞溅润滑流场分布和搅油力矩损失
刘桓龙1,2(),谢迟新1,2,李大法1,2,王家为1,2
1. 先进驱动节能技术教育部工程研究中心,四川 成都 610031
2. 西南交通大学 机械工程学院,四川 成都 610031
Flow field distribution of splash lubrication of gearbox and churning gear torque loss
Huan-long LIU1,2(),Chi-xin XIE1,2,Da-fa LI1,2,Jia-wei WANG1,2
1. Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, Chengdu 610031, China
2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1504 KB)   HTML
摘要:

齿轮箱飞溅润滑具有齿轮旋转、两相流及流场分布复杂等特点,难以通过理论或实验进行研究;在计算流体动力学方法上,传统的网格法存在动网格处理困难、计算成本高的弊端.针对以上问题,提出运用移动粒子半隐式法(MPS)对齿轮箱飞溅润滑开展仿真分析. 在低转速时,设置不同润滑油型号和温度工况,发现润滑油流场分布情况与试验结果较一致. 在高转速时,设置不同的油温工况,发现相对光滑粒子流体动力学方法(SPH),基于MPS方法数值计算所得的齿轮搅油力矩损失准确度更高,能够准确预测力矩损失变化趋势,但力矩损失预测误差较大,须进一步改进和完善. MPS方法严格保证了流体的不可压缩性,易于追踪捕捉大变形和强非线性化的自由液面,能够较好地分析预测齿轮箱飞溅润滑流场的分布效果.

关键词: 飞溅润滑移动粒子半隐式法(MPS)流场分布力矩损失计算流体动力学(CFD)    
Abstract:

Gearbox splash lubrication has the characteristics of gear rotation, two-phase flow and complex flow field distribution, which is difficult to study through theory or experiment. In terms of computational fluid dynamics, the traditional grid method has the disadvantages of difficulty in processing dynamic grids and high computational cost. In view of the above problems, the moving particle semi-implicit method (MPS) was used to carry out the simulation analysis of the gearbox splash lubrication. At low speeds, different lubricating oil models and temperature conditions were set, and it was found that the lubricating oil flow field distribution was in good agreement with the test results. At high speeds, different oil temperature conditions were set, and it was found that compared with the smooth particle hydrodynamics method (SPH), the accuracy of the gear churning torque loss obtained by the MPS method was higher. It can accurately predict the trend of torque loss, but the error of torque loss prediction is relatively large, and further improvement and perfection are needed. The MPS method strictly guarantees the incompressibility of the fluid. It is easy to track and capture the free surface with large deformation and strong non-linearity The MPS method can be used to analyze and predict the distribution of splash lubrication flow field of the gearbox well.

Key words: splash lubrication    moving particle semi-implicit method (MPS)    flow field distribution    torque loss    computational fluid dynamics (CFD)
收稿日期: 2020-04-28 出版日期: 2021-06-10
CLC:  U 273.1  
基金资助: 四川省科技厅重点研发资助项目(2018GZ0450)
作者简介: 刘桓龙(1977—),男,副教授,硕导,从事机电液一体化研究. orcid.org/0000-0001-8796-7190. E-mail: lhl_swjtu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘桓龙
谢迟新
李大法
王家为

引用本文:

刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.

Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.008        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/875

图 1  MPS法梯度模型示意图
图 2  MPS法边界粒子布置形式
参数 ${m_{\rm{n}}}$/mm $a$/mm $b$/mm ${\alpha _{\rm{n}}}$/(°) ${\;\beta _0}$/(°) $z$/个 ${d_{\rm{a}}}$/mm $x$
主动轮 4.5 91.5 14 20 0 16 82.45 0.182
从动轮 4.5 91.5 14 20 0 24 118.35 0.171
表 1  FZG C-PT 型齿轮几何参数
图 3  FZG齿轮试验机示意图
工况 ${n_{\rm{o}}}$ /(r·min?1) 润滑油型号 $\theta $ /℃ $h$ /mm
1 240 FVA3 40 ?32.2
2 360 FVA3 40 ?32.2
3 540 FVA3 40 ?32.2
4 240 FVA3 100 ?32.2
5 360 FVA3 100 ?32.2
6 540 FVA3 100 ?32.2
7 240 FVA2 40 ?32.2
8 360 FVA2 40 ?32.2
9 540 FVA2 40 ?32.2
表 2  齿轮箱飞溅润滑低转速工况参数
工况 $\theta $ /℃ $h$ /mm ${n_{\rm{w}}}$ /(r·min?1) 润滑油型号
1 60 ?20.0 1444 FVA3
2 60 ?20.0 3474 FVA3
3 90 ?20.0 1444 FVA3
4 90 ?20.0 3474 FVA3
5 120 ?20.0 1444 FVA3
6 120 ?20.0 3474 FVA3
表 3  齿轮箱飞溅润滑高转速工况参数
型号 ISO VG $\;\rho $/
(kg·m?3)
$\gamma $/(mm2·s?1)
θ=40 ℃ θ=60 ℃ θ=90 ℃ θ=100 ℃ θ=120 ℃
FVA3 100 864 95 40 15 10.7 5
FVA2 32 855 32 ? ? 5.4 ?
表 4  不同型号润滑油的密度与黏度
图 4  齿轮箱飞溅润滑仿真几何模型
低转速工况 ${t_{\rm{s}}}$/h 高转速工况 ${t_{\rm{s}}}$/h
1 140.2 1 23.6
2 76.7 2 14.7
3 61.0 3 26.2
4 153.3 4 17.1
5 85.3 5 30.1
6 42.3 6 19.5
7 171.4 ? ?
8 101.1 ? ?
9 90.1 ? ?
表 5  齿轮箱飞溅润滑不同工况求解耗时
$h$/mm 粒子数/个
?32.2 565538
?20.0 383103
表 6  齿轮箱飞溅润滑不同液位高度下粒子数
${n_{\rm{w}}}$ /(r·min?1) 硬件 ${d_{\rm{p}}}$/mm ${t_{\rm{p}}}$/s $\Delta t$/s ${t_{\rm{s}}}$/h
1444 NVIDIA Tesla K40m 1.0 2 1.9×10?6 72
3474 NVIDIA Tesla K40m 1.0 2 9.1×10?7 92
表 7  SPH法数值仿真基本参数
图 5  齿轮箱飞溅润滑油液形态分布
图 6  FVA3型润滑油时齿轮箱飞溅润滑仿真与试验对比图
图 7  FVA2型润滑油时齿轮箱飞溅润滑仿真与试验对比图
图 8  齿轮箱飞溅润滑不同工况下速度场分布图
图 9  1444 r/min转速时齿轮搅油力矩损失时域变化曲线
图 10  1444 r/min时试验与MPS仿真齿轮搅油力矩损失对比
图 11  3474 r/min时试验与MPS仿真齿轮搅油力矩损失对比
${n_{\rm{w}}}$/(r·min?1) $\theta $/℃ ${T_{\rm{m}}}$/(N·m) ${T_{\rm{s}}}$/(N·m) ${T_{\rm{e}}}$/(N·m) ${\delta _{\rm{m}}}$/% ${\delta _{\rm{s}}}$/%
1444 60 0.128 0.123 0.318 60 61
1444 90 0.106 0.098 0.297 64 67
1444 120 0.093 0.085 0.277 66 69
3474 60 0.307 0.261 0.584 47 55
3474 90 0.349 0.216 0.711 51 70
3474 120 0.650 0.199 1.130 43 82
表 8  不同工况下齿轮搅油力矩损失试验与仿真结果误差
1 CONCLI F, CONRADO E, GORLA C Analysis of power losses in an industrial planetary speed reducer: measurements and computational fluid dynamics calculations[J]. Journal of Engineering Tribology, 2014, 44 (2): 1- 3
2 GORLA C, CONCLI F, STAHL K, et al Hydraulic losses of a gearbox: CFD analysis and experiments[J]. Tribology International, 2013, 66: 337- 344
doi: 10.1016/j.triboint.2013.06.005
3 CONCLI F, GORLA C Numerical modeling of the power losses in geared transmissions: windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046
4 LIU H, JURKSCHAT T, LOHNER T, et al Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2018, 6 (2): 47
doi: 10.3390/lubricants6020047
5 LIU H, JURKSCHAT T, LOHNER T, et al Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2017, 109: 346- 354
doi: 10.1016/j.triboint.2016.12.042
6 沈林, 阮登芳, 涂攀 基于CFD方法的啮合齿轮搅油损失仿真分析[J]. 机械传动, 2018, 42 (11): 113- 116
SHEN Lin, RUAN Deng-fang, TU Pan Simulation analysis of meshing gear churning power loss based on CFD method[J]. Journal of Mechanical Transmission, 2018, 42 (11): 113- 116
7 HU X, JIANG Y, LUO C, et al Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398- 406
doi: 10.1016/j.triboint.2018.08.041
8 JIANG Y, HU X, HONG S, et al Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155- 164
doi: 10.1016/j.triboint.2019.03.048
9 孙凯, 刘少军, 胡小舟 基于动网格的中减速器飞溅润滑内部流场分析[J]. 润滑与密封, 2017, 42 (8): 131- 134
SUN Kai, LIU Shao-jun, HU Xiao-zhou Analysis on internal flow field of middle reducer splash lubrication based on dynamic mesh[J]. Lubrication Engineering, 2017, 42 (8): 131- 134
doi: 10.3969/j.issn.0254-0150.2017.08.025
10 HU X, LI P, WU M Influence of the dynamic motion of a splash-lubricated gearbox on churning power losses[J]. Energies, 2019, 12 (17): 3225
doi: 10.3390/en12173225
11 GROENENBOOM P, CARTWRIGHT B, MCGUCKIN D, et al Numerical studies and industrial applications of the hybrid SPH-FE method[J]. Computers and Fluids, 2019, 184: 40- 63
doi: 10.1016/j.compfluid.2019.03.012
12 赵迁, 杨良会, 赵春艳, 等. 基于SPH方法的纯电动车减速器润滑仿真 [C]// 2018中国汽车工程学会年会论文集. 上海: SAECCE, 2018: 882-886.
ZHAO Qian, YANG Liang-hui, ZHAO Chun-yan, et al. The Lubrication simulation of pure electric gearbox based on SPH [C]// Proceedings of SAE 2018. Shanghai: SAECCE, 2018: 882-886.
13 JI Z, STANIC M, HARTONO E A, et al Numerical simulations of oil flow inside a gearbox by smoothed particle hydrodynamics (SPH) method[J]. Tribology International, 2018, 127: 47- 58
doi: 10.1016/j.triboint.2018.05.034
14 LIU H, ARFAOUI G, STANIC M, et al Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Journal of Engineering Tribology, 2019, 233 (1): 74- 86
15 皮彪, 丁上, 王叶枫, 等 基于MPS的某重型汽车主减速器润滑系统优化与分析[J]. 润滑与密封, 2018, 43 (1): 98- 103
PI Biao, DING Shang, WANG Ye-feng, et al Optimization and analysis of main reducer lubrication for heavy vehicle[J]. Lubrication Engineering, 2018, 43 (1): 98- 103
doi: 10.3969/j.issn.0254-0150.2018.01.019
16 李晏, 皮彪, 王叶枫, 等 基于移动粒子半隐式法的齿轮搅油损失分析与试验验证[J]. 同济大学学报: 自然科学版, 2018, 46 (3): 368- 372
LI Yan, PI Biao, WANG Ye-feng, et al Analysis and validation of churning loss of helical gear based on moving particle semi-implicit method[J]. Journal of Tongji University: Natural Science, 2018, 46 (3): 368- 372
17 KOSHIZUKA S A particle method for incompressible viscous flow with fluid fragmentation[J]. Progress in Computational Fluid Dynamics, 1995, 4: 29- 46
18 孙学尧. 基于缓解压力振荡MPS法的数值水池研究[D]. 上海: 上海交通大学, 2011: 15.
SUN Xue-yao. Research on numerical wave tank based on pressure fluctuate reducing MPS method[D]. Shanghai: Shanghai Jiao Tong University, 2011: 15.
19 尹金. 基于MPS法的不可压流体的研究与模拟[D]. 合肥: 安徽大学, 2011: 44.
YIN Jin. Research and simulation of incompressible fluid based on MPS method[D]. Hefei: Anhui University, 2011: 44.
20 TANAKA M, MASUNAGA T Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229 (11): 4279- 4290
doi: 10.1016/j.jcp.2010.02.011
21 彭钱磊, 桂良进, 范子杰 基于齿面移动法的齿轮飞溅润滑性能数值分析与验证[J]. 农业工程学报, 2015, 31 (10): 51- 56
PENG Qian-lei, GUI Liang-jin, FAN Zi-jie Gear splash lubrication numerical simulation and validation based on teeth-face-moving method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (10): 51- 56
doi: 10.11975/j.issn.1002-6819.2015.10.007
22 YANG C, ZHANG H Numerical simulation of the interactions between fluid and structure in application of the MPS method assisted with the large eddy simulation method[J]. Ocean Engineering, 2018, 155 (1): 55- 64
23 SEETHARAMAN S, KAHRAMAN A, MOORHEAD M D, et al Oil churning power losses of a gear pair: experiments and model validation[J]. Journal of Tribology, 2009, 131 (2): 022202
doi: 10.1115/1.3085942
24 梁文宏, 刘凯, 崔亚辉 直齿轮搅油功率损失的实验研究[J]. 实验力学, 2015, 30 (2): 239- 244
LIANG Wen-hong, LIU Kai, CUI Ya-hui Experimental study of power loss in spur gear churning[J]. Journal of Experimental Mechanics, 2015, 30 (2): 239- 244
doi: 10.7520/1001-4888-14-117
25 CHERNORAY V, JAHANMIRI M Experimental study of multiphase flow in a model gearbox[J]. WIT Transactions on Engineering Sciences, 2011, 70: 153- 164
[1] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[2] 柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
[3] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[4] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[5] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[6] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.
[7] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[8] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[9] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[10] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[11] 李文春 胡桂林 刘永江 樊建人 岑可法. 熔融碳酸盐燃料电池的计算流体力学模拟[J]. J4, 2005, 39(10): 1638-1643.