Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 658-664    DOI: 10.3785/j.issn.1008-973X.2021.04.007
计算机技术、电信技术     
强度传输方程和神经网络融合的三维重构算法
程鸿(),胡佳杰,刘勇,叶远青
安徽大学 电子信息工程学院,安徽 合肥 230601
Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network
Hong CHENG(),Jia-jie HU,Yong LIU,Yuan-qing YE
School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
 全文: PDF(1216 KB)   HTML
摘要:

针对原有强度传输方程法所恢复的相位精度不够精确的缺点,提出强度传输方程和神经网络融合的三维重构算法. 利用强度传输方程求解出物体不同角度的初始相位,利用神经网络算法进行优化,根据不同角度的最终恢复相位结合乘法技术重构出三维体信息. 该算法具有精度高的特点,可以为三维成像技术的应用提供参考. 对于实验中的示例图像,该算法将强度传输方程得到的相位误差从21.40%降低为5.26%,重构三维物体与模拟真实物体的相关程度为显著相关.

关键词: 三维重构强度传输方程人工神经网络乘法技术相位恢复    
Abstract:

A three-dimensional reconstruction algorithm based on the fusion of transport of intensity equation and neural network was proposed in order to improve the accuracy of the phase retrieved by the original transport of intensity equation method. The initial phases of different angles of the object were solved by transport of intensity equation and optimized by the neural network algorithm. Then the three-dimensional information was reconstructed according to the final retrieval phases with different angles and the multiplicative technique. The algorithm has the characteristics of high precision, and can provide reference for the application of three-dimensional imaging technology. The phase error obtained by the transport of intensity equation was reduced from 21.40% to 5.26% for the example image in the experiment. The correlation degree between the reconstructed three-dimensional object and the simulated object was significant.

Key words: three-dimensional reconstruction    transport of intensity equation    artificial neural network    multiplicative technique    phase retrieval
收稿日期: 2020-07-04 出版日期: 2021-05-07
CLC:  O 436  
基金资助: 国家自然科学基金资助项目(61605002);安徽省高等学校自然科学研究资助项目(KJ2020ZD02,KJ2019ZD04);安徽省自然科学基金资助项目(2008085MF209)
作者简介: 程鸿(1981—),女,副教授,从事计算信号处理的研究. orcid.org/0000-0002-3712-1485. E-mail: chenghong@ahu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
程鸿
胡佳杰
刘勇
叶远青

引用本文:

程鸿,胡佳杰,刘勇,叶远青. 强度传输方程和神经网络融合的三维重构算法[J]. 浙江大学学报(工学版), 2021, 55(4): 658-664.

Hong CHENG,Jia-jie HU,Yong LIU,Yuan-qing YE. Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 658-664.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.007        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/658

图 1  强度差分原理图
图 2  TIE与ANN融合原理图
图 3  MT重构过程(以4个角度为例)
图 4  模拟生成物体及不同角度的投影图
图 5  基于TIE的初始相位结果
图 6  基于ANN的优化相位结果与对应的精确相位
图 7  精确相位图、初始相位图及优化相位图的三维显示
算法 ${ { {E} }_{{\rm{tr}}} }/{\text{%} }$ ${ { {E} }_{{\rm{tes}}} }/{\text{%} }$ ${ { {E} }_{{\rm{exa}}} }/{\text{%} }$ ${ {T} }/{\rm{s}}$
TIE 20.66 20.56 21.40 0.57
TIE+ANN 0.42 4.06 5.26 0.91
表 1  2种不同算法的误差比较
图 8  基于MT的三维重构
相关系数 相关程度
0~0.3 微相关
0.3~0.5 实相关
0.5~0.8 显著相关
0.8~1.0 高度相关
表 2  相关系数与相关程度的关系
1 SIMPSON J, LOPEZ L, ACAR P, et al Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography[J]. Journal of the American Society of Echocardiography, 2017, 30 (1): 1- 27
doi: 10.1016/j.echo.2016.08.022
2 MUSARRA G, LYONS A, CONCA E, et al Non-line-of-sight three-dimensional imaging with a single-pixel camera[J]. Physical Review Applied, 2019, 12 (1): 011002
doi: 10.1103/PhysRevApplied.12.011002
3 陈妮, 左超, BYOUNGHO L 基于深度测量的三维成像技术[J]. 红外与激光工程, 2019, 48 (6): 199- 223
CHEN Ni, ZUO Chao, BYOUNGHO L 3D imaging technology based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48 (6): 199- 223
4 BORN M, WOLF E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light [M]. Heading Hill Hall, Oxford OX3 0BW, England: Pergamon Press, 2013.
5 GERSHUN A The light field[J]. Journal of Mathematical Physics, 1939, 18: 51151
6 LAM E Y Computational photography with plenoptic camera and light field capture: tutorial[J]. Journal of the Optical Society of America, 2015, 32: 2021- 2032
doi: 10.1364/JOSAA.32.002021
7 黄坦. 基于强度传输方程的凸优化相位恢复算法研究[D]. 武汉: 华中科技大学, 2019.
HUANG Tan. Study of convex optimization phase retriev- al algorithm based on transport of intensity equation[D]. Wuhan: Huazhong University of Science and Technology, 2019.
8 纵榜铭. 基于PIE相位恢复的成像光学元件检测技术研究[D]. 无锡: 江南大学, 2019.
ZONG Bang-ming. Aberration measurement on optical imaging element with ptychographic iterative engine[D]. Wuxi: Jiangnan University, 2019.
9 沈成. 基于多图像迭代相位恢复技术的计算成像特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
SHEN Cheng. Computational imaging based on iterative multi-image phase retrieval techniques[D]. Harbin: Harbin Institute of Technology, 2018.
10 TEAGUE M R Deterministic phase retrieval: a Green’s function solution[J]. Journal of the Optical Society of America, 1983, 73 (11): 1434- 1441
doi: 10.1364/JOSA.73.001434
11 程鸿, 熊帮玲, 王金成, 等 基于配准递进补偿的相位恢复[J]. 光子学报, 2019, 48 (4): 0410002
CHENG Hong, XIONG Bang-ling, WANG Jin-cheng, et al Phase retrieval based on registration progressive compensation algorithm[J]. Acta Optica Sinica, 2019, 48 (4): 0410002
12 左超, 陈钱, 孙佳嵩, 等 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43 (6): 227- 257
ZUO Chao, CHEN Qian, SUN Jia-song, et al Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 2016, 43 (6): 227- 257
13 高要利. 双波长下基于强度传输方程的相位恢复和相位解缠研究[D]. 合肥: 安徽大学, 2019.
GAO Yao-li. Research on phase retrieval and phase unwrapping based on transport of intensity equation at two wave lengths[D]. Hefei: Anhui University, 2019.
14 CHENG H, WANG R, YE Y Q, et al Transport of intensity equation method based on edge detection and duty ratio fusion[J]. Journal of Optics, 2020, 22 (4): 045302
doi: 10.1088/2040-8986/ab7ae9
15 SUI L, ZHAO X, HUANG C, et al An optical multiple-image authentication based on transport of intensity equation[J]. Optics and Lasers in Engineering, 2019, 116: 116- 124
doi: 10.1016/j.optlaseng.2019.01.006
16 HU J, WEI Q, KONG Y, et al Higher order transport of intensity equation methods: comparisons and their hybrid application for noise adaptive phase imaging[J]. IEEE Photonics Journal, 2019, 11 (3): 1- 14
17 FAYED M, ELHADARY M, ABDERRAHMANE H A, et al The ability of forecasting flapping frequency of flexible filament by artificial neural network[J]. Alexandria Engineering Journal, 2019, 58 (4): 1367- 1374
doi: 10.1016/j.aej.2019.11.007
18 CHENG II H, LIU Y, ZHANG II Q. Phase retrieval algorithm based on the neural network and the GS[C]// Holography, Diffractive Optics, and Applications IX. Hangzhou: ISOP, 2019: 1118809.
19 NEHMETALLAH G T, AYLO R, WILLIAMS L. Analog and digital holography with MATLAB [M]. Bellingham: SPIE, 2015.
20 左超. 基于光强传输方程的非干涉相位恢复与定量相位显微成像方法研究[D]. 南京: 南京理工大学, 2014.
ZUO Chao. Research on non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation[D]. Nanjing: Nanjing University of Science and Technology, 2014.
21 GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: PMLR, 2010: 249-256.
22 RUDER S. An overview of gradient descent optimization algorithms [DB/OL]. (2017-06-15)[2021-02-19]. https://arxiv.org/abs/1609.04747.
[1] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[2] 黄赠, 王锐, 赵宇, 魏振磊. 隐伏断层地震诱发滑坡易发性评价[J]. 浙江大学学报(工学版), 2017, 51(11): 2136-2143.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[5] 刘凯, 张立民, 张超. 受限玻尔兹曼机的新混合稀疏惩罚机制[J]. 浙江大学学报(工学版), 2015, 49(6): 1070-1078.
[6] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. 浙江大学学报(工学版), 2014, 48(7): 1209-1216.
[7] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.
[8] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[9] 任沙浦, 沈国江. 短时交通流智能混合预测技术[J]. J4, 2010, 44(8): 1473-1478.
[10] 陈钰雯, 陈越. 基于光线追踪重构可视外壳的算法误差分析[J]. J4, 2010, 44(2): 243-247+299.
[11] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[12] 谭大鹏 李培玉 潘晓弘. 基于振动信号测量的连铸下渣检测系统[J]. J4, 2008, 42(8): 1399-1403.
[13] 顾正华. 河网水闸智能调度辅助决策模型研究[J]. J4, 2006, 40(5): 822-826.
[14] 周明华 汪国昭. 神经网络在二氧化碳提纯塔建模中的应用[J]. J4, 2006, 40(2): 352-355.
[15] 王明怡 吴平 夏顺仁. 基于人工神经网络集成的微阵列数据分类[J]. J4, 2005, 39(7): 971-975.