Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1690-1696    DOI: 10.3785/j.issn.1008-973X.2020.09.004
土木与交通工程     
微生物加固钙质砂环剪试验研究
丁绚晨(),陈育民*(),张鑫磊
河海大学 岩土力学与堤坝工程教育部重点实验室,土木与交通学院,江苏 南京 210098
Experimental study on microbial reinforced calcareous sand using ring shear apparatus
Xuan-chen DING(),Yu-min CHEN*(),Xin-lei ZHANG
Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
 全文: PDF(1138 KB)   HTML
摘要:

对取自南海岛礁的钙质砂进行固化处理,通过环剪试验研究微生物诱导碳酸钙沉积(MICP)胶结钙质砂的抗剪强度特性,并考虑菌液浓度、菌液浸泡时间、加固液浓度、加固时间、竖向应力以及海水环境等因素的影响. 结果表明:MICP方法可以有效提高钙质砂的抗剪强度. 当加固液浓度为0.5 mol/L时,加固后试样的抗剪强度达到最大值,约为未加固试样的3倍,并表现出显著的应变软化现象. 提高菌液浓度、菌液浸泡时间、加固液浓度、加固时间均可改善微生物加固效果,减小残余强度与峰值强度的比值,使试样的应变软化现象越来越明显. 海水环境虽对MICP加固过程有抑制作用,但在此环境下采用MICP方法仍能有效提升钙质砂地基的抗剪强度.

关键词: 微生物加固钙质砂环剪试验抗剪强度残余强度    
Abstract:

The calcareous sand reinforced in this experiment was obtained from an island in the South China Sea. The shear strength characteristics of microbially induced carbonate precipitation (MICP) cemented calcareous sand were studied using ring shear tests. The influences of bacterial concentration, immersion time of bacterial solution, cementation solution concentration, treated time, vertical stress and seawater environment were considered. Results show that MICP can effectively improve the shear strength of calcareous sand. When the cementation solution concentration was 0.5 mol/L, the shear strength of the treated samples reached the maximum values, which was about three times of that of the untreated samples, showing a remarkable strain softening phenomenon. Increasing the concentration of the bacteria solution, soaking time, concentration of the reinforcement solution and strengthening time can improve the reinforcement effect, reduce the ratio of residual strength to peak strength, and make the strain softening phenomenon more and more obvious. Although seawater has an inhibitory effect on the reinforcement process of MICP, the application of MICP in this environment can effectively improve the shear strength of calcareous sandy foundation.

Key words: microbial reinforcement    calcareous sand    ring shear tests    shear strength    residual strength
收稿日期: 2019-09-04 出版日期: 2020-09-22
CLC:  TU 433  
基金资助: 国家自然科学基金资助项目(41831282,51679072);中央高校基本科研业务费专项资金资助项目(2018B43214)
通讯作者: 陈育民     E-mail: dingxc2413@163.com;ymchenhhu@163.com
作者简介: 丁绚晨(1995—),女,硕士生,从事土动力学与岩土地震工程研究. orcid.org/0000-0001-6970-2965. E-mail: dingxc2413@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁绚晨
陈育民
张鑫磊

引用本文:

丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.

Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1690

图 1  钙质砂颗粒级配曲线
试剂名称 ρ/(g·L?1) 试剂名称 ρ/(g·L?1)
酵母提取物 20 NiCl2·6H2O 0.024
氯化铵 10 蒸馏水 1000
MnCl2·H2O 0.012 ? ?
表 1  微生物培养基配方
图 2  微生物诱导碳酸钙沉积(MICP)加固处理后的钙质砂试样
试样环境 σ/kPa OD600 tb / h c / (mol·L?1) t / d
淡水 50 0.380、0.474、0.542、0.633、0.759 2 0.4 3
0.474 1、3、4、5 0.4 3
0.474 2 0.50、0.60、0.75、1.00 3
0.474 2 0.4 4、5、6、7
25、75、100、125 0.474 2 0.4 7
海水 50 0.474 2 0.40、0.50、0.60、0.75、1.00 7
表 2  试样加固条件及环剪试验工况
图 3  不同影响因素条件下加固后钙质砂试样的切应力-剪切位移曲线
图 4  不同竖向应力条件下加固后钙质砂试样的切应力-剪切位移曲线
图 5  海水环境下加固后钙质砂试样的切应力-剪切位移曲线
图 6  不同影响因素条件下加固后钙质砂试样峰值强度与残余强度对比图
图 7  不同竖向应力条件下加固后钙质砂试样的峰值强度及残余强度对比图
1 陈海洋, 汪稔, 李建国, 等 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26 (9): 1389- 1392
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26 (9): 1389- 1392
doi: 10.3969/j.issn.1000-7598.2005.09.008
2 XIAO Y, LIU H L, XIAO P, et al Fractal crushing of carbonate sands under impact loading[J]. Geotechnique Letters, 2016, 6 (3): 1- 6
3 ALSHIBLI K A, DRUCKREY A M, AL-RAOUSH R I, et al Quantifying morphology of sands using 3D imaging[J]. Journal of Materials in Civil Engineering, 2014, 27 (10): 04014275
4 钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Progress in soil reinforcement by microbial grouting[J]. Geotechnical Mechanics, 2015, 36 (6): 1537- 1548
5 COOP M R, SORENSEN K K, FREITAS T B Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54 (3): 157- 163
doi: 10.1680/geot.2004.54.3.157
6 黄宏翔, 陈育民, 王建平, 等 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39 (6): 2082- 2088
HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping,. et al Circumferential shear test of shear strength characteristics of calcareous sand[J]. Geotechnical Mechanics, 2018, 39 (6): 2082- 2088
7 张家铭, 张凌, 蒋国盛, 等 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29 (10): 2789- 2793
ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29 (10): 2789- 2793
doi: 10.3969/j.issn.1000-7598.2008.10.037
8 张家铭, 张凌, 刘慧, 等 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报, 2008, 27 (Suppl.): 3010- 3015
ZHANG Jia-ming, ZHANG Ling, LIU Hui, et al Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (Suppl.): 3010- 3015
9 LEMOS L, SKEMPTON A W, VAUGHAN P R. Earthquake loading of shear surfaces in slopes [C] // Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE). San Francisco: ICSMFE, 1985: 1955 – 1962.
10 PAASSEN V, DAZA C M, STAAL M M, et al Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36 (2): 168- 175
doi: 10.1016/j.ecoleng.2009.03.026
11 LEON A, PAASSEN V. Ground improvement by microbially induced carbonate precipitation [D]. Netherlands: Delft University of Technology, 2009.
12 QABANY A A, SOGA K, SANTAMARINA C Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138 (8): 992- 1001
doi: 10.1061/(ASCE)GT.1943-5606.0000666
13 WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement [D]. Western Australia: Murdoch University, 2004.
14 KHAN M N H, AMARAKOON G G N N, SHIMAZAKI S, et al Coral sand solidification test based on microbially induced carbonate precipition using ureolytic bacteria[J]. Materials Transactions, 2015, 56 (10): 1725- 1732
doi: 10.2320/matertrans.M-M2015820
15 刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al MICP cemented calcareous sand dynamic characteristic test[J]. Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
16 方祥位, 李晶鑫, 李捷, 等 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39 (S1): 1- 8
FANG Xiang-wei, LI Jing-xin, LI Jie, et al Triaxial compression test and damage constitutive model of microbial solidified coral sand[J]. Geotechnical Mechanics, 2018, 39 (S1): 1- 8
17 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学, 2014.
ZHAN Qian. Experimental study on microorganism induced calcium carbonate precipitation (MICP) solidified soil [D]. Beijing: China University of Geosciences, 2014.
18 OKWADHA G D O, LI J Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81 (9): 1143- 1148
doi: 10.1016/j.chemosphere.2010.09.066
19 李成杰, 魏桃员, 季斌, 等 不同钙源及Ca2+浓度对MICP的影响 [J]. 环境科学与技术, 2018, 41 (3): 30- 34
LI Cheng-jie, WEI Tao-yuan, JI bin, et al Effect of different calcium sources and Ca2+ concentration on micp [J]. Environmental Science and Technology, 2018, 41 (3): 30- 34
20 张昆, 郭菊彬 滑带土残余强度参数试验研究[J]. 铁道工程学报, 2007, (8): 13- 15
ZHANG Kun, GUO Ju-bin Experimental research on the residual strength parameters of slip soils[J]. Journal of Railway Engineering Society, 2007, (8): 13- 15
doi: 10.3969/j.issn.1006-2106.2007.08.004
[1] 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232.
[2] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[3] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[4] 王国庆, 程壮, 王振宇, 陈枫, 张毅. 带剪力键钢板-高强灌浆体的抗剪承载力[J]. 浙江大学学报(工学版), 2015, 49(7): 1282-1287.
[5] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.
[6] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[7] 钟世英,凌道盛,吴晓君,陈云敏. 月壤岩土工程问题研究进展[J]. J4, 2012, 46(5): 777-784.
[8] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.