Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 1-10    DOI: 10.3785/j.issn.1008-973X.2019.01.001
土木工程     
药剂稳定化垃圾焚烧飞灰的工程特性测试研究
徐辉1,2, 缪建冬1, 陈萍1, 詹良通2, 罗小勇3
1. 浙江理工大学 建筑工程学院, 浙江 杭州 310018;
2. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058;
3. 上海市政工程设计研究总院(集团)有限公司, 上海 200092
Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents
XU Hui1,2, MIAO Jian-dong1, CHEN Ping1, ZHAN Liang-tong2, LUO Xiao-yong3
1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
3. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China
 全文: PDF(1548 KB)   HTML
摘要:

对南方某药剂稳定化飞灰填埋场的钻孔试样(5个龄期、3处埋深)开展室内土工特性测试,包括颗粒级配、相对密度、水质量分数、持水量、渗透系数、压缩特性、抗剪强度等. 试验结果表明:稳定化飞灰的平均粒径为0.8~3.1 mm,接近于粗砂或细砾;不均匀系数为4.56~10.33,曲率系数为0.32~0.43,属于级配不良;相对密度为1.68~2.56;水质量分数为16.6%~46.4%,持水量为23.9%~56.7%,具有吸水性能;渗透系数为9.1×10-5~4.5×10-3 cm/s,随着上覆应力的增大而减小;压缩系数为1.21~1.93 MPa-1,具有高压缩性;修正主压缩指数为0.13~0.18;内摩擦角为32.9°~34.2°,黏聚力为14.0~19.5 kPa,后者主要来源于稳定化飞灰的胶结特性;随着龄期的增长,稳定化飞灰的胶结结构逐渐弱化,导致稳定化飞灰的粒径和相对密度减小、持水量增大、渗透系数和抗剪强度降低. 对比分析稳定化飞灰的工程特性与生活垃圾的差异,对稳定化飞灰填埋场的设计、运营和管理提出了相应的工程建议.

Abstract:

Laboratory tests were conducted to analyze the geotechnical properties of chemically stabilized municipal solid waste incineration (MSWI) fly ash. The borehole samples were obtained from a landfill in southern China, which covered five different fill ages and three different burial depths. The measurements involved grain-size distribution, relative density, water content, moisture retention capacity, permeability coefficient, compression property, shear strength, etc. The mean diameter was 0.8-3.1 mm, which was close to coarse sand or fine gravel. The non-uniform coefficient and curvature coefficient were 4.56-10.33 and 0.32-0.43, respectively. The stabilized fly ash was poorly graded. The relative density was 1.68-2.56. The moisture content and moisture retention capacity were 16.6%-46.4% and 23.9%-56.7%, respectively. There is water absorbing capacity for the stabilized fly ash. The permeability coefficient was 9.1×10-5-4.5×10-3 cm/s, which decreased with increasing stress. The primary compression ratio and compression coefficient were 0.13-0.18 and 1.21-1.93 MPa-1, respectively. The stabilized fly ash has the property of high compressibility. The cohesive force and friction angle were 14.0-19.5 kPa and 32.9°-34.2°, respectively. The cohesion is mainly contributed by the cementing properties of the stabilized fly ash. The cementitious structure of the stabilized fly ash might be deteriorated with increasing fill age, which resulted in decreases in grain size, relative density, permeability coefficient and shear strength, and an increase in moisture retention capacity. The comparison analysis was conducted between the present results and the references' data for MSW. Engineering comments were proposed for the design, operation and management of the stabilized MSWI fly ash landfills.

收稿日期: 2018-04-23 出版日期: 2019-01-07
CLC:  TU411  
基金资助:

国家自然科学基金资助项目(5157081460,51708508);住建部科技计划资助项目(2015R3002);软弱土与环境土工教育部重点实验室(浙江大学)开放基金资助项目(2017P03)

作者简介: 徐辉(1987-),男,博士,硕导,从事环境岩土工程的研究.orcid.org/0000-0001-9283-8975.E-mail:xuhui@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.

XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 1-10.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/1

[1] 国家统计局. 中国统计年鉴[R]. 北京:中国统计出版社, 2010-2016. State Statistical bureau. Statistical yearbook of china[R]. Beijing:China Statistics Press, 2010-2016.
[2] WEIBEL G, EGGENBERGER U, SCHLUMBERGER S, et al. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J]. Waste Management, 2017(62):147-159.
[3] ZHANG B, ZHOU W, ZHAO H, et al. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator[J]. Waste Management, 2016(50):105-112.
[4] ZHAO Y C, SONG L J, LI G J. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials, 2002, 95(1/2):47-63.
[5] JIANG J G, WANG J, XU X, et al. Heavy metal stabilization in municipal solid waste incineration fly ash using heavy metal chelating agents[J]. Journal of Hazardous Materials, 2004, 113(1-3):141-146.
[6] 李华, 司马菁珂, 罗启仕,等. 危险废物焚烧飞灰中重金属的稳定化处理[J]. 环境工程学报, 2012, 6(10):3740-3746 LI Hua, SIMA Jing-ke, LUO Qi-shi, et al. Stabilization of heavy metals in hazardous waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2012, 6(10):3740-3746
[7] 孙杨雨, 焦春磊, 谭笑, 等. 生活垃圾焚烧飞灰中重金属的稳定化及其机理研究[J]. 中国科学:化学, 2016, 46(7):714-722 SUN Yang-yu, JIAO Chun-lei, TAN Xiao, et al. Stabilization and mechanism of heavy metals in municipal solid waste incinerator fly ash[J]. Scientia Sinica (Chimica), 2016, 46(7):714-722
[8] 李建陶, 曾鸣, 杜兵, 等. 垃圾焚烧飞灰药剂稳定化矿物学特性[J]. 中国环境科学, 2017, 37(11):4188-4194 LI Jian-tao, ZENG Ming, DU Bing, et al. Mineralogical characteristics of MSWI fly ash stabilized by chemical reagents[J]. China Environmental Science, 2017, 37(11):4188-4194
[9] 蒋建国, 张妍, 许鑫, 等. 可溶性磷酸盐处理焚烧飞灰的稳定化技术[J]. 环境科学, 2005, 26(4):191-194 JIANG Jian-guo, ZHANG Yan, XU Xin, et al. Heavy metal stabilization in municipal solid waste incineration fly ash using soluble phosphate[J]. Environmental Science, 2005, 26(4):191-194
[10] 张后虎, 何品晶, 章骅, 等. 有机磷酸HEDP稳定垃圾焚烧飞灰重金属的研究[J]. 环境污染治理技术与设备, 2006, 7(11):45-48 ZHANG Hou-hu, HE Pin-jing, ZHANG Hua, et al. Immobilization of heavy metals in air pollution control residues from MSW incinerator using organophosphate HEDP[J]. Techniques and Equipment for Environmental Pollution Control, 2006, 7(11):45-48
[11] 中华人民共和国行业标准. 土工试验规程:SL237-1999[S]. 北京:中国水利水电出版社, 1999.
[12] MIZUTANI S, SLOOT H A V D, SAKAI S I. Evaluation of treatment of gas cleaning residues from MSWI with chemical agents[J]. Studies in Environmental Science, 2000, 20(2/3):233-240.
[13] SHIMAOKA T, HANASHIMA M. Behavior of stabilized fly ashes in solid waste landfills[J]. Waste Management, 1996, 16(5/6):545-554.
[14] ZHAN L T, XU H, CHEN Y M, et al. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill:Preliminary findings from a large-scale experiment[J]. Waste Management, 2017(63):27-40.
[15] BREITMEYER R J. Hydraulic characterization of municipal solid waste[D]. Madison:University of Wisconsin-Madison, 2011.
[16] WU H, WANG H, ZHAO Y, et al. Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age[J]. Waste Management, 2012, 32(3):463-470.
[17] NAZLI Y, HANSON J L, COX J T, et al. Determination of specific gravity of municipal solid waste[J]. Waste Management, 2014, 34(5):848-858.
[18] TANG Q, LIU Y, GU F, et al. Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement[J]. Advances in Materials Science and Engineering, 2016, 2016(5):1-10.
[19] 兰吉武, 詹良通, 李育超, 等. 填埋垃圾初始水质量分数对渗滤液产量的影响及修正渗滤液产量计算公式[J]. 环境科学, 2012, 33(4):1389-1396 LAN Ji-wu, ZHAN Liang-tong, LI Yu-chao, et al. Impacts of initial moisture content of MSW waste on leachate generation and modified formula for predicting leachate generation[J]. Environmental Science, 2012, 33(4):1389-1396
[20] 骆行文, 杨明亮, 姚海林, 等. 陈垃圾土的工程力学特性试验研究[J]. 岩土工程学报, 2006, 28(5):622-625 LUO Xing-wen, YANG Ming-liang, YAO Hai-lin, et al. Experimental study on engineering mechanical properities of stale refuse[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5):622-625
[21] 赵瑜, 李晓红, 卢义玉, 等. 重庆市某卫生填埋场陈垃圾土的工程特性研究[J]. 重庆建筑大学学报, 2008, 30(3):35-38 ZHAO Yu, LI Xiao-hong, LU Yi-yu, et al. Engineering properties of stale waste from a landfill in Chongqing, P.R. China[J]. Journal of Chongqing Jianzhu University, 2008, 30(3):35-38
[22] 朱向荣, 谢新宇, 王朝晖, 等. 杭州天子岭垃圾填埋体土工性状试验研究[J]. 土木工程学报, 2004, 37(10):52-58 ZHU Xiang-rong, XIE Xin-yu, WANG Zhao-hui, et al. An experiment study on the geotechnical behavior of the Tianziling solid waste landfill of Hangzhou[J]. China Civil Engineering Journal, 2004, 37(10):52-58
[23] ZHAN T L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97(3/4):97-111.
[24] 李燕. 紫色土砾石的分布及其对土壤水分性质的影响[D]. 重庆:西南大学, 2006. LI Yan. Distribution of purple soil gravel and its influence on soil water properties[D]. Chongqing:Southwest University, 2006.
[25] ZHAN L T, XU H, CHEN Y M, et al. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill:liquid-gas interactions observed from a large-scale experiment[J]. Waste Management, 2017(68):307-318.
[26] XU H, ZHAN L T, LI H, et al. Time-and stress-dependent model for predicting moisture retention capacity of high-food-waste-content municipal solid waste:based on experimental evidence[J]. Journal of Zhejiang University:Science A, 2016, 17(7):525-540.
[27] 涂帆, 柯秋菊, 解仲明, 等. 城市固体废弃物持水率的室内实验研究[J]. 环境工程学报, 2010(12):2860-2864 TU Fan, KE Qiu-ju, XIE Zhong-ming, et al. Experimental study on water holdup of municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2010(12):2860-2864
[28] 孔令伟, 李新明, 田湖南. 砂土渗透系数的细粒效应与其状态参数关联性[J]. 岩土力学, 2011(增2):21-26. KONG Ling-wei, LI Xin-ming, TIAN Hu-nan. Effect of fines content on permeability coefficient of sand and its correlation with state parameters[J]. Rock and Soil Mechanics, 2011(Suppl.2):21-26.
[29] BEAVEN R P. The hydrogeological and geotechnical properties of household waste in relation to sustainable landfilling[D]. London:University of London, 2000.
[30] STAUB M, GALIETTI B, OXARANGO L, et al. Porosity and hydraulic conductivity of MSW using laboratory-scale tests[C]//Proceedings of the Hydro-Physico-Mechanics of Landfills. Braunschweig:[s. n.], 2009:1-9.
[31] JANG Y S, KIM Y W, LEE S I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea[J]. Waste Management, 2002, 22(3):261-267.
[32] HUDSON A, BEAVEN R P, POWRIE W. Interaction of water and gas in saturated household waste in large scale compression cell[C]//8th International Waste Management and Landfill Symposium. Cagliari:[s. n.], 2001:585-593.
[33] POWRIE W, BEAVEN R P, HUDSON A P. The influence of landfill gas on the hydraulic conductivity of waste[C]//GeoCongress. New Orleans:ASCE, 2008:264-271.
[34] CHEN Y M, HAN K, FREDLUND D G, et al. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5):706-717.
[35] GAO W, CHEN Y, ZHAN L, et al. Engineering properties for high kitchen waste content municipal solid waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6):646-658.
[36] CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1):86-95.
[37] 袁玲, 施惠生, 岳鹏. 垃圾焚烧飞灰胶凝活性初探[J]. 同济大学学报:自然科学版, 2003, 31(12):1444-1448 YUAN Ling, SHI Hui-sheng, YUE Peng. Research on potential cementitious reactivity of fly ash from incinerator of municipal solid wastes[J]. Journal of Tongji University:Natural Science, 2003, 31(12):1444-1448
[38] MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11):940-951.
[39] AES A, VILAR O M. Influence of composition and degradation on the shear strength of municipal solid waste[J]. Waste Management, 2017(68):263-274.
[40] 冯世进, 周子范, 陈云敏, 等. 城市固体废弃物剪切强度参数的研究[J]. 浙江大学学报:工学版, 2005, 39(7):987-991 FEN Shi-jin, ZHOU Zi-fan, CHEN Yun-min, et al. Study on shear strength parameters of municipal solid waste[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(7):987-991

[1] 王强, 胡新丽, 徐迎, 周昌, 徐楚. 软岩土石混合体的击实特性与细观机理研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2295-2305.
[2] 陈颖骐, 王全才. 滑坡设计推力优化计算[J]. 浙江大学学报(工学版), 2018, 52(7): 1320-1328.
[3] 黄铭枫, 李强, 涂志斌, 楼文娟. 基于Copula函数的杭州地区多风向极值风速估计[J]. 浙江大学学报(工学版), 2018, 52(5): 828-835.
[4] 吴建奇, 杨骁, 徐旭, 刘飞禹. 部分排水条件下饱和红黏土循环试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1309-1316.