Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 597-605    DOI: 10.3785/j.issn.1008-973X.2020.03.021
电气工程     
多跨转子系统多频传递力主动控制
徐晖(),祝长生*()
浙江大学 电气工程学院,浙江 杭州 310058
Active control with multi-frequency transmission force of multi-span rotor system
Hui XU(),Chang-sheng ZHU*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1799 KB)   HTML
摘要:

设计一种用于传递力控制的电磁执行器与滑动轴承组合的混合轴承,分析混合轴承的工作原理. 采用有限单元法建立一个多盘多跨转子系统的动力学模型,分析圆盘处的扰动力和轴承处控制力对轴承传递力的影响. 基于误差信号子带滤波理论提出一种由多个单频力控制器并联而成的变步长自适应控制算法. 在MATLAB/Simulink平台上建立双跨转子系统传递力主动控制仿真模型并进行数值仿真. 结果表明,提出的多频力控制方法可以对误差信号进行有效地滤波,能够对多跨转子系统的多频传递力进行有效地抑制.

关键词: 多跨转子混合轴承多频传递力子带滤波变步长迭代    
Abstract:

Firstly, a hybrid bearing, combining the electromagnetic actuator and journal bearing, was designed to control the multi-frequency transmission force in multi-span rotor system, and the operation principle was analyzed. Then, a dynamic model of the multi-span rotor system with multi-disc was built by the finite element method, and the influence of the disturbance force at the disc and the control force at the bearing on the transmission force was analyzed. Next, an iterative algorithm with variable step size was proposed based on sub-band filtering of error signal. Finally, the numerical model of multi-frequency forces transmitted to the base in two-span rotor system was built in MATLAB/Simulink platform and numerical simulations were carried out. The simulation results indicate that the proposed algorithm can effectively extract the error signal at different frequencies and suppress the multi-frequency transmission force of multi-span rotor system.

Key words: multi-span rotors    hybrid bearing    multi-frequency transmission forces    sub-band filtering    iteration with variable step
收稿日期: 2019-01-27 出版日期: 2020-03-05
CLC:  TB 535  
基金资助: 国家自然科学基金资助项目(11632015);基础预研资助项目(302030116-0659-001)
通讯作者: 祝长生     E-mail: 15605176312@163.com;zhu_zhang@zju.edu.cn
作者简介: 徐晖(1995—),男,硕士生,从事转子传递力主动控制. orcid.org/0000-0002-7516-0135. E-mail: 15605176312@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐晖
祝长生

引用本文:

徐晖,祝长生. 多跨转子系统多频传递力主动控制[J]. 浙江大学学报(工学版), 2020, 54(3): 597-605.

Hui XU,Chang-sheng ZHU. Active control with multi-frequency transmission force of multi-span rotor system. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 597-605.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/597

图 1  电磁执行器的基本结构
图 2  电磁执行器差动驱动结构图
图 3  多盘多跨转子系统模型
图 4  多跨转子系统多频传递力主动控制系统
图 5  多频传递力控制器内部框图
图 6  自适应控制器内部结构
图 7  不同α、β取值情况下步长与误差信号变化关系图
图 8  自适应控制器内部框图
图 9  数字滤波模块原理图
参数名称 数值 单位
圆盘直径 300 mm
圆盘宽 30 mm
圆盘密度 7 753 kg/m3
转子A及B轴的直径 60 mm
转子A长 1 200 mm
转子B长 900 mm
轴密度 7 853 kg/m3
弹性模量 2.07×1011 N/m2
泊松比 0.3 ?
转子A前轴承位置 300 mm
转子A后轴承位置 1 000 mm
联轴器位置 1 000 mm
联轴器质量 1 kg
转子B前轴承位置 1 400 mm
转子B后轴承位置 1 800 mm
各滑动轴承的等效刚度 2×107 N/m
各滑动轴承的等效阻尼 3×103 N/(m·s?1)
表 1  双跨转子系统参数表
图 10  转子系统有限元模型
图 11  转子A上施加控制后各轴承处转子的振动及传递力波形
图 12  转子A上施加控制力前、后各轴承传递力频谱形
图 13  转子A上施加控制力前、后转子A前轴承误差滤波器输出与主控制器参数轨迹
图 14  转子B施加控制力后各轴承传递力频谱形
图 15  转子A和B上均施加控制力后各轴承传递力频谱形
1 RIVIN E I Passive vibration isolation[J]. Applied Mechanics Reviews, 2004, 57 (6): B31- B32
2 CAPLE M, MASLEN E, NAGEL J, et al Control of an AMB to zero static force[J]. Mechanical Engineering Journal, 2017, 4 (5): 17- 17-00012
3 XING J, HE L D, WANG K Optimizing control for rotor vibration with magnetorheological fluid damper[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31 (5): 538- 545
4 ZHAO G, ALJEVIC N, DEPRAETERE B, et al Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators[J]. Journal of Sound and Vibration, 2015, 348: 15- 30
doi: 10.1016/j.jsv.2015.03.013
5 TANG J, LIU B, FANG J, et al Suppression of vibration caused by residual unbalance of rotor for magnetically suspended flywheel[J]. Journal of Vibration and Control, 2013, 19 (13): 1962- 1979
doi: 10.1177/1077546312449643
6 PESCH A H, SAWICHI J T Active magnetic bearing online levitation recovery through μ-synthesis robust control[J]. Actuators, 2017, 6 (2): 1- 14
7 CHEN S C, NGUYEN V S, LE D K, et al. An online trained adaptive neural network controller for an active magnetic bearing system [C] // International Symposium on Computer. IEEE, 2014.
8 HE Y, SHI L, SHI Z, et al. Unbalance compensation of a full scale test rig designed for HTR-10GT: a frequency- domain approach based on iterative learning control [J]. Science and Technology of Nuclear Installations, 2017: Article ID 3126738.
9 DIMITRI A S, MAHFOUD J, ELSHAFEI A Oil whip elimination using fuzzy logic controller[J]. Journal of Engineering for Gas Turbines and Power, 2015, 138 (6): 062502
10 LIU C, LIU G Auto balancing control for MSCMG based on sliding-mode observer and adaptive compensation[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4346- 4356
11 JIANG K, ZHU C Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25 (4): 1417- 1429
doi: 10.1016/j.ymssp.2010.11.012
12 王忠博, 毛川, 祝长生 电磁轴承高速电机转子多频振动的电流补偿控制[J]. 中国电机工程学报, 2018, 38 (1): 275- 284
WANG Zhong-bo, MAO Chuan, ZHU Chang-sheng Current compensation control of multiple frequency vibrations of the rotor in active magnetic bearing high speed motors[J]. Proceedings of the CSEE, 2018, 38 (1): 275- 284
13 ZHENG S, HAN B, FENG R, et al Vibration suppression control for AMB supported motor driveline system using synchronous rotating frame transformation[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (9): 5700- 5708
14 PENG C, SUN J, SONG X, et al Frequency varying current harmonics elimination for active magnetic bearing system via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2016, 64 (1): 517- 526
15 ZENGER K, ALTOWATI A, TAMMI K, et al. Feedforward multiple harmonic control for periodic disturbance rejection [C] // Proceedings of 11th International Conference on Control Automation Robotics and Vision. Singapore: IEEE, 2011: 305-310.
16 SETIAWAN J D, MUKHERJEE R, MASLEN E H, et al. Adaptive compensation of sensor runout and mass unbalance in magnetic bearing systems [C] // Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Atlanta: IEEE/ASME, 1999: 800-805.
17 CUI P, LI S, ZHAO G, et al Suppression of harmonic current in active–passive magnetically suspended CMG using improved repetitive controller[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21 (4): 2132- 2141
doi: 10.1109/TMECH.2016.2555858
18 G. SCHWEITZER, E. H. MASLEN. Magnetic bearings: theory, design, and application to rotating machinery [M]. New York: Springer, 2009.
No related articles found!