浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 257-263    DOI: 10.3785/j.issn.1008-973X.2020.02.006
 土木与交通工程

1. 浙江大学 土木工程系，浙江 杭州 310058
2. 中国地质大学（武汉） 工程学院，湖北 武汉 430074
Tension analysis of hangers with stepped cross-section based on state space method
Guang OUYANG1(),Tian-jun LI2,Jiang-tao ZHANG1,Jing-feng WANG1,Rong-qiao XU1,*()
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(808 KB)   HTML

Abstract:

An accurate analysis method based on the state space method was developed for the dynamic characteristics of hangers with stepped cross-section for arch bridges using the theory of Euler-Bernoulli beam with axial force. The different cross-section characteristics and material parameters of each part of hangers can be considered in detail as well as the complicated boundary conditions at both ends of the hangers in practical engineering. The relationship of the free vibration frequencies and tension of hangers can then be obtained. It provides a theoretical basis for the so-called frequency method to measure the tension of hangers. The method was verified by the in-situ testing data of tension forces and the results of finite element analysis for the hangers of a practical arch bridge. When the length of the cable segment of a hanger is greater than a certain threshold, a strong linear relation between the effective calculation length of the hanger and the realistic length of the cable segment of the hanger exists. As a result, this method can be combined with the classical string theory, and the effective length of the hanger related to the realistic length of the cable segment can be identified. The classical string theory can be used to calculate the tension of hangers conveniently in practical engineering.

Key words: hanger with stepped cross-section    tension    frequency method    state space method    effective length

 CLC: TU 311

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 欧阳光 李田军 张江涛 汪劲丰 徐荣桥

#### 引用本文:

Guang OUYANG,Tian-jun LI,Jiang-tao ZHANG,Jing-feng WANG,Rong-qiao XU. Tension analysis of hangers with stepped cross-section based on state space method. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 257-263.

#### 链接本文:

 图 1  拱桥吊杆示意图 图 2  拱桥的分段变截面吊杆的梁模型 表 1  吊杆的几何参数 表 2  本研究方法计算所得基频与现场实测、有限元分析结果的比较 图 3  吊杆1#~6#的一阶振型 表 3  吊杆有效计算长度的识别结果 图 4  有效计算长度与索体长度的关系
 1 KO J M, NI Y Q Technology developments in structural health monitoring of large-scale bridges[J]. Engineering Structures, 2005, 27 (12): 1715- 1725 doi: 10.1016/j.engstruct.2005.02.021 2 陈鲁, 张其林, 吴明儿 索结构中拉索张力测量的原理与方法[J]. 工业建筑, 2006, 36 (1): 368- 371CHEN Lu, ZHANG Qi-lin, WU Ming-er Principle and method of measuring cable tension in a cable structures[J]. Industrial Construction, 2006, 36 (1): 368- 371 3 IRVINE H M, CAUGHEY T K The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society A, 1974, 341 (1626): 299- 315 doi: 10.1098/rspa.1974.0189 4 KRONEBERGER-STANTON K J, HARTSOUGH B R A monitor for indirect measurement of cable vibration frequency and tension[J]. Transaction of the ASCE, 1992, 35 (1): 341- 346 doi: 10.13031/2013.28609 5 CASAS J R A combined method for measuring cable forces: the cable-stayed Alamillo Bridge, Spain[J]. Structural Engineering International, 1994, 4 (94): 235- 240 6 RUSSELL J C, LARDNERZ T J Experimental determination of frequencies and tension for elastic cables[J]. Journal of Engineering Mechanics, 1998, 124 (10): 1067- 1072 doi: 10.1061/(ASCE)0733-9399(1998)124:10(1067) 7 CUNHA A, CAETANO E, DELGADO R Dynamic tests on large cable-stayed bridge[J]. Journal of Bridge Engineering, 2001, 6 (1): 54- 62 doi: 10.1061/(ASCE)1084-0702(2001)6:1(54) 8 REN W X, CHEN G, HU W H Empirical formulas to estimate cable tension by cable fundamental frequency[J]. Structural Engineering and Mechanics, 2005, 20 (20): 363- 380 9 KIM B H, PARK T Estimation of cable tension force using the frequency-based system identification method[J]. Journal of Sound and Vibration, 2007, 304 (3?5): 660- 676 doi: 10.1016/j.jsv.2007.03.012 10 FANG Z, WANG J Q Practical formula for cable tension estimation by vibration method[J]. Journal of Bridge Engineering, 2012, 17 (1): 161- 164 doi: 10.1061/(ASCE)BE.1943-5592.0000200 11 CHEN C C, WU W H, LEU M R, et al Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements[J]. Measurement, 2016, 86: 182- 195 doi: 10.1016/j.measurement.2016.02.053 12 姚文斌, 何天淳, 王锋 斜拉桥拉索索力测定的新方法[J]. 仪器仪表学报, 2001, 22 (增2): 90- 91YAO Wen-bin, HE Tian-chun, WANG Feng A new method determining cable tension on cable-stayed bridge[J]. Chinese Journal of Scientific Instrument, 2001, 22 (增2): 90- 91 13 SUMITRO S, KUROKAWA S, SHIMANO K, et al Monitoring based maintenance utilizing actual stress sensory technology[J]. Smart Materials and Structures, 2005, 14 (3): S68 doi: 10.1088/0964-1726/14/3/009 14 SUMITRO S, WANG M L Sustainable structural health monitoring system[J]. Structural Control and Health Monitoring, 2010, 12 (3/4): 445- 467 15 NAGULESWARAN S Vibration of an Euler–Bernoulli beam on elastic end supports and with up to three step changes in cross-section[J]. International Journal of Mechanical Sciences, 2002, 44 (12): 2541- 2555 doi: 10.1016/S0020-7403(02)00190-X 16 NAGULESWARAN S Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force[J]. International Journal of Mechanical Sciences, 2003, 45 (9): 1563- 1579 doi: 10.1016/j.ijmecsci.2003.09.001 17 LEE J W, LEE J Y Free vibration analysis using the transfer-matrix method on a tapered beam[J]. Computers and Structures, 2016, 164 (C): 75- 82 18 BANERJEE J R Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method[J]. Journal of Sound and Vibration, 2000, 233 (5): 857- 875 doi: 10.1006/jsvi.1999.2855 19 NAGEM R, WILLIAMSJR J Dynamic analysis of large space structures using transfer matrices and joint coupling matrices[J]. Journal of Structural Mechanics, 2012, 17 (3): 349- 371 20 方志, 张智勇 斜拉桥的索力测试[J]. 中国公路学报, 1997, (1): 51- 58FANG Zhi, ZHANG Zhi-yong Test of cable tension in cable-stayed bridges[J]. China Journal of Highway and Transport, 1997, (1): 51- 58 21 刘文峰, 应怀樵, 柳春图 考虑刚度及边界条件的索力精确求解[J]. 振动与冲击, 2003, 22 (4): 12- 14 LIU Wen-feng, YING Huai-qiao, LIU Chun-tu Precise solution of cable tensile force in consideration of cable stiffness and its boundary conditions[J]. Journal of Vibration and Shock, 2003, 22 (4): 12- 14 doi: 10.3969/j.issn.1000-3835.2003.04.004
 [1] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795. [2] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193. [3] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433. [4] 刘承斌, 边祖光, 陈伟球. 叠层压电球壳的三维热释电分析[J]. J4, 2011, 45(6): 1067-1073.