计算机与自动化技术 |
|
|
|
|
采用梯度提升决策树的车辆换道融合决策模型 |
徐兵(),刘潇,汪子扬,刘飞虎,梁军*() |
浙江大学 控制科学与工程学院,浙江 杭州 310058 |
|
Fusion decision model for vehicle lane change with gradient boosting decision tree |
Bing XU(),Xiao LIU,Zi-yang WANG,Fei-hu LIU,Jun LIANG*() |
College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China |
引用本文:
徐兵,刘潇,汪子扬,刘飞虎,梁军. 采用梯度提升决策树的车辆换道融合决策模型[J]. 浙江大学学报(工学版), 2019, 53(6): 1171-1181.
Bing XU,Xiao LIU,Zi-yang WANG,Fei-hu LIU,Jun LIANG. Fusion decision model for vehicle lane change with gradient boosting decision tree. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1171-1181.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.017
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1171
|
1 |
DOU Y, YAN F, FENG D. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers [C] // 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Banff: IEEE, 2016: 901–906.
|
2 |
张元良 基于Stackelberg博弈理论的自主性车道变换模型[J]. 交通运输系统工程与信息, 2014, 14 (5): 67- 73 ZHANG Yuan-liang Discretionary lane changing modeling based on Stackelberg game theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14 (5): 67- 73
doi: 10.3969/j.issn.1009-6744.2014.05.010
|
3 |
GIPPS P G A model for the structure of lane-changing decisions[J]. Transportation Research, Part B (Methodological), 1986, 20 (5): 403- 414
doi: 10.1016/0191-2615(86)90012-3
|
4 |
YANG Q, KOUTSOPOULOS H N A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research-Part C Emerging Technologies, 1996, 4 (3): 113- 130
doi: 10.1016/S0968-090X(96)00006-X
|
5 |
AHMED K I. Modeling drivers' acceleration and lane changing behavior [D]. Cambridge: Massachusetts Institute of Technology, 1999.
|
6 |
TOLEDO T, KOUTSOPOULOS H N, BEN-AKIVA M Integrated driving behavior modeling[J]. Transportation Research Part C Emerging Technologies, 2007, 15 (2): 96- 112
doi: 10.1016/j.trc.2007.02.002
|
7 |
SCHUBERT R, SCHULZE K, WANIELIK G Situation assessment for automatic lane-change maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (3): 607- 616
doi: 10.1109/TITS.2010.2049353
|
8 |
WANG E, SUN J, JIANG S, et al Modeling the various merging behaviors at expressway on-ramp bottlenecks using support vector machine models[J]. Transportation Research Procedia, 2017, 25: 1327- 1341
doi: 10.1016/j.trpro.2017.05.157
|
9 |
MOTAMEDIDEHKORDI N, AMINI S, HOFFMANN S, et al. Modeling tactical lane-change behavior for automated vehicles: a supervised machine learning approach [C] // 2017 IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples: IEEE, 2017: 268–273.
|
10 |
DíAZ-áLVAREZ A, CLAVIJO M, JIMéNEZ F, et al Modelling the human lane-change execution behaviour through Multilayer Perceptrons and Convolutional Neural Networks[J]. Transportation research part F: traffic psychology and behaviour, 2018, 56: 134- 148
doi: 10.1016/j.trf.2018.04.004
|
11 |
FRIEDMAN J H Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232
|
12 |
HE X, PAN J, JIN O, et al. Practical lessons from predicting clicks on ads at facebook [C] // Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. New York: ACM, 2014: 1–9.
|
13 |
PIETRA S A D, PIETRA S A D, PIETRA S A D. A maximum entropy approach to natural language processing[M]. Cambridge: MIT Press, 1996.
|
14 |
HOU Y, EDARA P, SUN C Modeling Mandatory Lane Changing Using Bayes Classifier and Decision Trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (2): 647- 655
doi: 10.1109/TITS.2013.2285337
|
15 |
COIFMAN B, LI L A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset[J]. Transportation Research Part B: Methodological, 2017, 105: 362- 377
doi: 10.1016/j.trb.2017.09.018
|
16 |
OSSEN S, HOOGENDOORN S Validity of trajectory-based calibration approach of car-following models in presence of measurement errors[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, (2088): 117- 125
|
17 |
PUNZO V, FORMISANO D J, TORRIERI V Nonstationary kalman filter for estimation of accurate and consistent car-following data[J]. Transportation research record, 2005, 1934 (1): 2- 12
doi: 10.1177/0361198105193400101
|
18 |
WANG Q, LI Z L L Investigation of Discretionary Lane-Change Characteristics Using Next-Generation Simulation Data Sets[J]. Journal of Intelligent Transportation Systems, 2014, 18 (3): 246- 253
doi: 10.1080/15472450.2013.810994
|
19 |
MENG Q, WENG J Classification and regression tree approach for predicting drivers’ merging behavior in short-term work zone merging areas[J]. Journal of Transportation Engineering, 2012, 138 (8): 1062- 1070
doi: 10.1061/(ASCE)TE.1943-5436.0000412
|
20 |
YANG D, ZHU L, RAN B, et al Modeling and analysis of the lane-changing execution in longitudinal direction[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 1- 9
|
21 |
ESTABROOKS A, JO T, JAPKOWICZ N A multiple resampling method for learning from imbalanced data sets[J]. Computational intelligence, 2004, 20 (1): 18- 36
doi: 10.1111/coin.2004.20.issue-1
|
22 |
李根 基于梯度提升决策树的高速公路交织区汇入模型[J]. 东南大学学报: 自然科学版, 2018, 48 (3): 563- 567 LI Gen Merging model in freeway weaving section based on gradient boosting decision tree[J]. Journal of Southeast University: Natural Science Edition, 2018, 48 (3): 563- 567
|
23 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524
doi: 10.1126/science.1205438
|
24 |
FRIEDMAN J H, MEULMAN J J Multiple additive regression trees with application in epidemiology[J]. Statistics in Medicine, 2003, 22 (9): 1365- 1381
doi: 10.1002/(ISSN)1097-0258
|
25 |
CHICCO, DAVIDE Ten quick tips for machine learning in computational biology[J]. BioData Mining, 2017, 10 (1): 35
doi: 10.1186/s13040-017-0155-3
|
26 |
BERGSTRA J, BENGIO Y Random Search for Hyper-Parameter Optimization[J]. Journal of Machine Learning Research, 2012, 13 (1): 281- 305
|
27 |
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization [C] // International Conference on Neural Information Processing Systems. Granada: Curran Associates Inc. 2011.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|