Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1157-1163    DOI: 10.3785/j.issn.1008-973X.2019.06.015
机械与能源工程     
湿蒸汽流场下介入式探针振动数值模拟
胡展豪(),冯俊涛,盛德仁*(),陈坚红,李蔚
浙江大学 热工与动力系统研究所,浙江 杭州 310027
Numerical simulation for vibration of interferometric probein wet steam flow field
Zhan-hao HU(),Jun-tao FENG,De-ren SHENG*(),Jian-hong CHEN,Wei LI
Institute of Thermal Science and Power System,Zhejiang University, Hangzhou 310027, China
 全文: PDF(1322 KB)   HTML
摘要:

介入式探针在汽轮机末级与湿蒸汽流场相互影响,采用双向流固耦合技术对该三元流动问题进行数值分析,研究探针在湿蒸汽流场下的受力情况和振动特性. 利用Workbench平台搭建流固耦合模型,采用基于湍流剪应力输运的k-ω模型以提高计算精度. 计算结果表明:探针在XYZ方向的振动周期略有波动,最大振幅分别为0.28 mm、4.75和5.50 μm. 由于光学探针结构特殊,探针前端测量区域受到压差作用力很小,前端的形变量增长率有所降低. 在振动过程中,探针背流方向约2/3探针长度处应力值最大,该值远低于探针材料的许用应力,且在计算工况下不会引发共振效应.

关键词: 介入式探针湿蒸汽两相流场振动特性双向流固耦合技术数值分析    
Abstract:

The bidirectional fluid solid coupling technique was adopted to analyze the three-element flow problem that the interferometric probe interacts with the wet steam flow field at the end stage of the steam turbine. The vibration characteristics and stress of the probe under wet steam flow field were studied. The fluid solid coupling model was built by using Workbench platform. The k-ω model based on turbulent shear stress transport was used to improve calculation accuracy. Results show that the vibration period of the three directions X, Y and Z of probe fluctuate slightly. The oscillation amplitudes in directions X, Y and Z were 0.28 mm, 4.75 μm and 5.50 μm, respectively. Due to the special structure of the optical probe, the pressure differential force acting on the tip of the probe is very small, leading to a decrease in the growth rate of the shape variable at the front end. During probe vibration, the maximum stress position of the probe is about 2/3 of the point in the direction of back flow of the probe, the maximum stress is far below the allowable stress of the probe material, and the resonance effect is not induced in the calculation condition.

Key words: interferometric probe    two-phase wet steam flow field    vibration characteristics    bidirectional fluid solid coupling technique    numerical analysis
收稿日期: 2018-04-10 出版日期: 2019-05-22
CLC:  O 359  
通讯作者: 盛德仁     E-mail: 21727038@zju.edu.cn;shengdr@zju.edu.cn
作者简介: 胡展豪(1995—),男,硕士生,从事两相流光学测量技术研究. orcid.org/0000-0002-8812-4635. E-mail: 21727038@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡展豪
冯俊涛
盛德仁
陈坚红
李蔚

引用本文:

胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.

Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.015        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1157

图 1  双向流固耦合数值计算流程图
图 2  探针内部构件分布图
图 3  探针与周围流场的几何模型
图 4  局部网格加密处理的流场结构化网格
图 5  稳态计算探针表面的应力场
图 6  稳态计算探针附近流体的速度场
图 7  探针表面最大压力与网格节点数的关系
图 8  雷诺数约为30 000时的湍流尾迹
图 9  稳态计算得到的探针周围流场流线图
图 10  用于监测探针振动情况的监测点位置
图 11  探针在3个方向上的位移-时间曲线
图 12  探针振动形变云图
图 13  探针中部截面周围流场压力云图
图 14  探针测量部分周围流场压力云图
图 15  探针应力最大时在XZ平面的应力云图
图 16  探针应力最大位置在一个振动周期内的应力
1 WHITE A J, YOUNG J B, WALTERS P T Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades[J]. Proceedings of the Royal Society A, 1996, 354 (1704): 59- 88
doi: 10.1098/rsta.1996.0003
2 HUANG L X, YOUNG J B An analytical solution for the Wilson point in homogeneously nucleating flows[J]. Proceedings of the Royal Society A, 1996, 452 (1949): 1459- 1473
doi: 10.1098/rspa.1996.0074
3 BAKHTAR F, EBRAHIMI M, WEBB R A On the performance of a cascade of turbine rotor tip section blading in nucleating steam: I: surface pressure distributions[J]. Proceedings of the Institution of Mechanical Engineers.part C.mechanical Engineering Science, 1995, 204 (33): 169- 177
4 韩中合, 陈柏旺, 刘刚, 等 湿蒸汽两相凝结流动中水滴生长模型研究[J]. 中国电机工程学报, 2011, 31 (29): 79- 84
HAN Zhong-he, CHEN Bai-wang, LIU Gang, et al Droplets growth model in wet steam two-phase condensation flow[J]. Proceedings of the CSEE, 2011, 31 (29): 79- 84
5 余兴刚, 谢诞梅, 王纯, 等 汽轮机叶片表面粗糙度对自发凝结级性能影响的数值研究[J]. 中国电机工程学报, 2015, 35 (21): 5533- 5541
YU Xing-gang, XIE Dan-mei, WANG Chun, et al Numerical investigation of the effect of blade roughness on the performance of steam turbine nucleating stage[J]. Proceedings of the CSEE, 2015, 35 (21): 5533- 5541
6 黄竹青, 丁涛, 许春山 基于激光的后向角散射法测量蒸汽湿度[J]. 激光与红外, 2016, 46 (1): 21- 27
HUANG Zhu-qing, DING Tao, XU Chun-shan Research on steam humidity measurement by the backward angle scattering[J]. Laser and Infrared, 2016, 46 (1): 21- 27
doi: 10.3969/j.issn.1001-5078.2016.01.004
7 KLEITZ A, COURANT J J Probes for industrial particle measurement: application for water droplet sizing in wet steam turbines[J]. Journal of Aerosol Science, 1989, 20 (8): 1477- 1480
doi: 10.1016/0021-8502(89)90866-5
8 DOBKES A L, ZILBER T M, KACHURINER Y Y, et al Studying the characteristics of wet steam in turbine flow sections[J]. Thermal Engineering, 1992, 39 (1): 45- 49
9 马力, 蔡小舒, 田昌, 等 试验汽轮机内湿蒸汽测量研究[J]. 热力透平, 2012, 41 (2): 97- 105
MA Li, CAI Xiao-shu, TIAN Chang, et al Research on the measurement of wet steam in a test steam turbine[J]. Thermal Turbine, 2012, 41 (2): 97- 105
doi: 10.3969/j.issn.1672-5549.2012.02.003
10 黄雪峰, 盛德仁, 陈坚红, 等 布拉格光纤光栅测量湿蒸汽两相流温/湿度的理论数学模型[J]. 中国电机工程学报, 2006, 26 (7): 40- 46
HUANG Xue-feng, SHENG De-ren, CHEN Jian-hong, et al Theoretic mathematics model based on fiber Bragg grating sensor measurement in two-phase wet steam flow temperature/moisture[J]. Proceedings of the CSEE, 2006, 26 (7): 40- 46
doi: 10.3321/j.issn:0258-8013.2006.07.008
11 HUANG X F, SHENG D R, CEN K F, et al Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber bragg grating[J]. Sensors and Actuators B Chemical, 2007, 127 (2): 518- 524
doi: 10.1016/j.snb.2007.05.007
12 张晶晶, 王镇宇, 蔡小舒, 等 湿蒸汽联合探针的风洞标定和数值模拟的比较[J]. 工程热物理学报, 2011, 32 (6): 937- 940
ZHANG Jing-jing, WANG Zhen-yu, CAI Xiao-shu, et al Comparison between calibration and numerical simulation of an integrated probe for wet steam measurement[J]. Journal of Engineering Thermophysics, 2011, 32 (6): 937- 940
13 BOSDAS I, MANSOUR M, KALFAS A I, et al Unsteady flow field and coarse droplet measurements in the last stage of a low-pressure steam turbine with supersonic airfoils near the blade Tip[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139 (9): 091601
doi: 10.1115/1.4036011
14 项延辉, 蔡小舒, 周骛, 等 330MW低压汽轮机湿蒸汽二次水滴测量实验研究[J]. 上海理工大学报, 2017, 39 (3): 223- 228
XIANG Yan-hui, CAI Xiao-shu, ZHOU Wu, et al Experimental research on the coarse water droplets measurement in a 330 MW LP steam turbine[J]. Journal of University of Shanghai for Science and Technology, 2017, 39 (3): 223- 228
15 杨荣菲, 赵建通, 向宏辉, 等 进口探针支杆对1.5级压气机气动性能的影响[J]. 推进技术, 2017, 38 (5): 1038- 1046
YANG Rong-fei, ZHAO Jian-tong, XIANG Hong-hui, et al Effects of inlet probe support on aerodynamic performance of 1.5-stage compressor[J]. Journal of Propulsion Technology, 2017, 38 (5): 1038- 1046
16 马宏伟, 项乐 探针支杆对压气机转子性能及流场影响的数值模拟研究[J]. 推进技术, 2016, 37 (12): 2288- 2295
MA Hong-wei, XIANG Le Numerical investigation of effects of probe support on performance and flow field of compressor rotor[J]. Journal of Propulsion Technology, 2016, 37 (12): 2288- 2295
17 向宏辉, 任铭林, 马宏伟, 等 叶型探针对跨声压气机性能影响的数值模拟[J]. 热能动力工程, 2011, 26 (6): 645- 650
XIANG Hong-hui, REN Ming-lin, MA Hong-wei, et al Numerical simulation of the effect of a leaf probe on the performance of a transonic compressor[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (6): 645- 650
[1] 董海燕,张友鹏,李少远,董海龙. 超大伞裙腕臂复合绝缘子积污分布的风洞模拟[J]. 浙江大学学报(工学版), 2019, 53(8): 1563-1571.
[2] 张立栋, 韦庆文, 王擎. 回转干馏炉内挡板形状对二元颗粒运动混合的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1542-1550.
[3] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[4] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[5] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.
[6] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[7] 黄伟,王家序,徐涛,肖科,李俊阳,吴会超. 金属橡胶复合齿轮副振动特性分析及实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2231-2238.
[8] 周佳锦,王奎华,龚晓南,张日红,严天龙. 静钻根植抗拔桩承载性能数值模拟[J]. 浙江大学学报(工学版), 2015, 49(11): 2135-2141.
[9] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.
[10] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[11] 艾青林,黄伟锋,祖顺江. 基于螺旋理论的钢带并联机器人力学特性数值分析[J]. J4, 2011, 45(9): 1650-1656.
[12] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. J4, 2010, 44(8): 1621-1628.
[13] 项贻强, 孙筠. 深层混凝土搭板处治路桥过渡段的动力响应[J]. J4, 2010, 44(10): 1863-1869.
[14] 王光庆. 微型超声波电机定子振动特性有限元分析[J]. J4, 2009, 43(7): 1273-1278.
[15] 金南国 金贤玉 沈建 田野. 早龄期混凝土软化关系的数值分析[J]. , 2009, 43(4): 732-737.