航空航天技术 |
|
|
|
|
分布式卫星云雾网络及时延与能耗策略 |
任智源1, 侯向往1, 郭凯2, 张海林1, 陈晨1 |
1. 西安电子科技大学ISN国家重点实验室, 陕西 西安 710071;
2. 北京遥测技术研究所, 北京 100076 |
|
Distributed satellite cloud-fog network and strategy of latency and power consumption |
REN Zhi-yuan1, HOU Xiang-wang1, GUO Kai2, ZHANG Hai-lin1, CHEN Chen1 |
1. State Key Laboratory of ISN, Xidian University, Xi'an 710071, China;
2. Beijing Telemetry Technology Research Institute, Beijing 100076, China |
引用本文:
任智源, 侯向往, 郭凯, 张海林, 陈晨. 分布式卫星云雾网络及时延与能耗策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1474-1481.
REN Zhi-yuan, HOU Xiang-wang, GUO Kai, ZHANG Hai-lin, CHEN Chen. Distributed satellite cloud-fog network and strategy of latency and power consumption. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1474-1481.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.006
或
http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1474
|
[1] 林来兴. 分布式小卫星系统的技术发展与应用前景[J]. 航天器工程, 2010, 19(1):60-66 LIN Lai-xing. Technological development and appli cation prospects of distributed small satellite system [J]. Spacecraft Engineering, 2010, 19(1):60-66
[2] 吴曼青, 吴巍, 周彬, 等. 天地一体化信息网络总体架构设想[J]. 卫星与网络, 2016, 3(4):30-36 WU Man-qing, WU Wei, ZHOU Bin, et al, The overall framework of integrated information network[J]. Satellite and Network, 2016, 3(4):30-36
[3] 郝玉龙, 孙阳, 李冰. 基于云计算的卫星地面应用系统设计[J]. 计算机应用与软件, 2012, 29(4):216-219 HAO Yu-long, SUN Yang, LI Bing. Cloud computing based satellite ground application system design[J]. Computer Applications and Software, 2012, 29(4):216-219
[4] BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the internet of things[C]//First Edition of the MCC Workshop on Mobile Cloud Computing. New York:ACM, 2012:13-16
[5] NADEEM M A, SAEED M A. Fog computing:an emerging paradigm[C]//20166th International Conference on Innovative Computing Technology. Dublin:IEEE, 2016:83-86
[6] GIA T N, JIANG M, RAHMANI A M, et al. Fog computing in healthcare internet of things:a case study on ECG feature extraction[C]//IEEE International Conference on Computer and Information Technology. Liverpool:IEEE, 2015:357-363
[7] SARKAR S, MISRA S. Theoretical modelling of fog computing:a green computing paradigm to support IoT applications[J]. IET Networks, 2016, 5(2):23-29.
[8] TRUONG N B, LEE G M, GHAMRI-DOUDANE Y. Software defined networking-based vehicular adhoc network with fog computing[C]//IFIP/IEEE International Symposium on Integrated Network Management (IM). Ottawa:IEEE, 2015:1202-1207
[9] DENG R, LU R, LAI C, et al. Optimal workload allocation in fog-cloud computing towards balanced delay and power consumption[J]. IEEE Internet of Things Journal, 2016, 6(3):1171-1181.
[10] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948
[11] 刘万军, 张孟华, 郭文越. 基于MPSO算法的云计算资源调度策略[J]. 计算机工程, 2011, 37(11):43-48 LIU Wan-jun, ZHANG Meng-hua, GUO Wen-yue. Cloud computing resource schedule strategy based on MPSO algorithm[J]. Computer Engineering, 2011, 37(11):43-48
[12] 李相勇, 田澎, 孔民. 解约束优化问题的新粒子群算法[J]. 系统管理学报, 2007, 16(2):120-129 LI Xiang-yong, TIAN Peng, KONG Min. A new particle swarm optimization for solving constrained optimization problems[J]. Journal of Systems and Management, 2007, 16(2):120-129
[13] 赵建华, 张陵, 孙清. 利用粒子群算法的传感器优化布置及结构损伤识别研究[J]. 西安交通大学学报, 2015, 49(1):79-85 ZHAO Jian-hua, ZHANG Ling, SUN Qing. Optimal placement of sensors for structural damage identifi cation using improved particle swarm optimization[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):79-85
[14] RADOJEVIC B, ZAGAR M. Analysis of issues with load balancing algorithms in hosted (cloud) environments[C]//Proceedings of the 34th International Convention. Opatija:IEEE, 2011:416-420
[15] GHUMMAN N S, KAUR R. Dynamic combination of improved max-min and ant colony algorithm for load balancing in cloud system[C]//International Conference on Computing, Communication and Networking Technologies. Denton:IEEE, 2015:1-5
[16] TU K, LIANG Z. Parallel computation models of particle swarm optimization implemented by multiple threads[J]. Expert Systems with Applications, 2011, 38(5):5858-5866.
[17] MUSSI L, DAOLIO F, CAGNONI S. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture[J]. Information Sciences, 2011, 181(20):4642-4657.
[18] WAINTRAUB M, SCHIRRU R, PEREIRA C. Multi processor modeling of parallel particle swarm optimiza tion applied to nuclear engineering problems[J]. Progress in Nuclear Energy, 2009, 51(6/7):680-688. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|