Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1474-1481    DOI: 10.3785/j.issn.1008-973X.2018.08.006
航空航天技术     
分布式卫星云雾网络及时延与能耗策略
任智源1, 侯向往1, 郭凯2, 张海林1, 陈晨1
1. 西安电子科技大学ISN国家重点实验室, 陕西 西安 710071;
2. 北京遥测技术研究所, 北京 100076
Distributed satellite cloud-fog network and strategy of latency and power consumption
REN Zhi-yuan1, HOU Xiang-wang1, GUO Kai2, ZHANG Hai-lin1, CHEN Chen1
1. State Key Laboratory of ISN, Xidian University, Xi'an 710071, China;
2. Beijing Telemetry Technology Research Institute, Beijing 100076, China
 全文: PDF(862 KB)   HTML
摘要:

为了解决分布式卫星的地面云计算中心架构存在的高传输时延问题,提出分布式卫星云雾网络(DSCFN)架构,由小卫星编队飞行组成卫星雾网络,根据地面站云计算得出的任务划分比例直接进行本地分布式计算,降低业务处理时延.由于卫星的计算能力较弱,时延降低将导致能耗增加,卫星工作寿命减短,为此提出均衡时延和能耗的策略,利用改进的粒子群优化(MPSO)算法,解决能耗约束下的时延优化问题,达到时延和能耗折中的目标.仿真结果表明,基于MPSO算法得出的任务比例进行分布式计算,可以在能耗约束条件下,有效地降低卫星雾网络的任务处理时延,满足时延敏感型业务的需求;由10颗小卫星组成的DSCFN处理1 Gb数据的时延相比地面云中心降低了90.7%.

Abstract:

To resolve the problem of high transmission latency in the distributed satellite cloud computing center architecture, a distributed satellite cloud fog network (DSCFN) architecture was proposed. The satellite fog network consisted of small satellites, and carried out distributed computing locally according to the task partition ratio calculated from the earth station cloud. As a result, the task processing latency was reduced. The computing power of satellites was weak and the reduction of the latency would lead to incensement of power consumption, thus, the working life of satellites was shortened. A balanced strategy of latency and power consumption was proposed to achieve the tradeoff between power consumption and latency by leveraging a modified particle optimization (MPSO) algorithm. Simulation indicates that the MPSO algorithm for distributed computing reduces the task processing latency of satellite fog network efficiently and meets the demand of latency-sensitive applications under the power consumption constraints. Compared with the ground cloud computing center, the latency performance of DSCFN was increased by 90.7% when using 10 small satellites and processing 1 Gb data.

收稿日期: 2017-11-08 出版日期: 2018-08-23
CLC:  TP393  
基金资助:

国家重点研发计划政府间国际科技创新合作资助项目(2016YFE0123000);国家自然科学基金资助项目(61201133,61571338,61671347);国家重点研发计划资助项目(SQ2016YFHZ021501);陕西省重点研发计划资助项目(2017ZDCXL-GY-05-01);高等学校学科创新引智计划资助项目(B08038)

作者简介: 任智源(1983-),男,副教授,博士,从事边缘计算、宽带无线通信网络的研究.orcid.org/0000-0003-0224-6074.E-mail:zyren@s-an.org
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

任智源, 侯向往, 郭凯, 张海林, 陈晨. 分布式卫星云雾网络及时延与能耗策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1474-1481.

REN Zhi-yuan, HOU Xiang-wang, GUO Kai, ZHANG Hai-lin, CHEN Chen. Distributed satellite cloud-fog network and strategy of latency and power consumption. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1474-1481.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.006        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1474

[1] 林来兴. 分布式小卫星系统的技术发展与应用前景[J]. 航天器工程, 2010, 19(1):60-66 LIN Lai-xing. Technological development and appli cation prospects of distributed small satellite system [J]. Spacecraft Engineering, 2010, 19(1):60-66
[2] 吴曼青, 吴巍, 周彬, 等. 天地一体化信息网络总体架构设想[J]. 卫星与网络, 2016, 3(4):30-36 WU Man-qing, WU Wei, ZHOU Bin, et al, The overall framework of integrated information network[J]. Satellite and Network, 2016, 3(4):30-36
[3] 郝玉龙, 孙阳, 李冰. 基于云计算的卫星地面应用系统设计[J]. 计算机应用与软件, 2012, 29(4):216-219 HAO Yu-long, SUN Yang, LI Bing. Cloud computing based satellite ground application system design[J]. Computer Applications and Software, 2012, 29(4):216-219
[4] BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the internet of things[C]//First Edition of the MCC Workshop on Mobile Cloud Computing. New York:ACM, 2012:13-16
[5] NADEEM M A, SAEED M A. Fog computing:an emerging paradigm[C]//20166th International Conference on Innovative Computing Technology. Dublin:IEEE, 2016:83-86
[6] GIA T N, JIANG M, RAHMANI A M, et al. Fog computing in healthcare internet of things:a case study on ECG feature extraction[C]//IEEE International Conference on Computer and Information Technology. Liverpool:IEEE, 2015:357-363
[7] SARKAR S, MISRA S. Theoretical modelling of fog computing:a green computing paradigm to support IoT applications[J]. IET Networks, 2016, 5(2):23-29.
[8] TRUONG N B, LEE G M, GHAMRI-DOUDANE Y. Software defined networking-based vehicular adhoc network with fog computing[C]//IFIP/IEEE International Symposium on Integrated Network Management (IM). Ottawa:IEEE, 2015:1202-1207
[9] DENG R, LU R, LAI C, et al. Optimal workload allocation in fog-cloud computing towards balanced delay and power consumption[J]. IEEE Internet of Things Journal, 2016, 6(3):1171-1181.
[10] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948
[11] 刘万军, 张孟华, 郭文越. 基于MPSO算法的云计算资源调度策略[J]. 计算机工程, 2011, 37(11):43-48 LIU Wan-jun, ZHANG Meng-hua, GUO Wen-yue. Cloud computing resource schedule strategy based on MPSO algorithm[J]. Computer Engineering, 2011, 37(11):43-48
[12] 李相勇, 田澎, 孔民. 解约束优化问题的新粒子群算法[J]. 系统管理学报, 2007, 16(2):120-129 LI Xiang-yong, TIAN Peng, KONG Min. A new particle swarm optimization for solving constrained optimization problems[J]. Journal of Systems and Management, 2007, 16(2):120-129
[13] 赵建华, 张陵, 孙清. 利用粒子群算法的传感器优化布置及结构损伤识别研究[J]. 西安交通大学学报, 2015, 49(1):79-85 ZHAO Jian-hua, ZHANG Ling, SUN Qing. Optimal placement of sensors for structural damage identifi cation using improved particle swarm optimization[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):79-85
[14] RADOJEVIC B, ZAGAR M. Analysis of issues with load balancing algorithms in hosted (cloud) environments[C]//Proceedings of the 34th International Convention. Opatija:IEEE, 2011:416-420
[15] GHUMMAN N S, KAUR R. Dynamic combination of improved max-min and ant colony algorithm for load balancing in cloud system[C]//International Conference on Computing, Communication and Networking Technologies. Denton:IEEE, 2015:1-5
[16] TU K, LIANG Z. Parallel computation models of particle swarm optimization implemented by multiple threads[J]. Expert Systems with Applications, 2011, 38(5):5858-5866.
[17] MUSSI L, DAOLIO F, CAGNONI S. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture[J]. Information Sciences, 2011, 181(20):4642-4657.
[18] WAINTRAUB M, SCHIRRU R, PEREIRA C. Multi processor modeling of parallel particle swarm optimiza tion applied to nuclear engineering problems[J]. Progress in Nuclear Energy, 2009, 51(6/7):680-688.

[1] 刘炜伦, 张衡阳, 郑博, 高维廷. 优先级区分服务的机载网络媒质接入控制协议[J]. 浙江大学学报(工学版), 2019, 53(1): 99-106.
[2] 赖晓翰, 文昊翔, 陈隆道. 潮间带无线传感器网络路由算法[J]. 浙江大学学报(工学版), 2018, 52(12): 2414-2422.
[3] 刘臻, 武泽慧, 曹琰, 魏强. 基于漏洞指纹的软件脆弱性代码复用检测方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2180-2190.
[4] 齐小刚, 王振宇, 刘立芳, 刘兴成, 马久龙. 无线传感器和执行器网络可靠高效路由[J]. 浙江大学学报(工学版), 2018, 52(10): 1964-1972.
[5] 胡钢, 徐翔, 过秀成. 基于解释结构模型的复杂网络节点重要性计算[J]. 浙江大学学报(工学版), 2018, 52(10): 1989-1997.
[6] 贾文超, 胡荣贵, 施凡, 许成喜. 多特征关联的注入型威胁检测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 524-530.
[7] 李冰, 金涛, 陈帅. 提高SRAM PUFs密钥生成可靠性的方法[J]. 浙江大学学报(工学版), 2018, 52(1): 133-141.
[8] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[9] 罗友强, 刘胜利, 颜猛, 武东英. 基于通信行为分析的DNS隧道木马检测方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1780-1787.
[10] 尹可挺, 周波, 张帅, 徐斌, 陈一稀, 江丹. Web服务组合中基于QoS的自底向上服务替换[J]. J4, 2010, 44(4): 700-709.
[11] 王瑞琴, 孔繁胜, 潘俊. 基于WordNet的无导词义消歧方法[J]. J4, 2010, 44(4): 732-737.
[12] 周强, 应晶, 吴明晖. 基于特征分类的机会网络多因素预测路由[J]. J4, 2010, 44(3): 413-419.
[13] 欧阳杨, 陈宇峰, 陈溪源, 等. 教育语义网中的知识领域本体建模[J]. J4, 2009, 43(09): 1591-1596.
[14] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[15] 王健, 孙建伶, 王新宇, 等. 软件容错模型中的部分抢占实时调度算法[J]. J4, 2009, 43(6): 1047-1052.