[1] CARNEY R R. "Slush hydrogen" production and handling as a fuel for space projects[M].:Springer US, 1964, 529-536.
[2] REYNIER P, BUGEL M, LECOîNTRE J. Review of the modelling of slush hydrogen flows[J]. Journal of Computational Multiphase Flows, 2011, 3(3):123-146.
[3] JIN T, LI Y J, LIANG Z B, et al. Numerical prediction of flow characteristics of slush hydrogen in a horizontal pipe[J]. International Journal of Hydrogen Energy, 2017,42(6):3778-3779.
[4] JIN Tao, LI Yi-jian, WU Shu-qin, et al. Numerical modeling for the flow and heat transfer of slush nitrogen in a horizontal pipe based on population balance equations[J]. Applied Thermal Engineering, 2017,123:301-309.
[5] OHIRA K, ISHIMOTO J, NOZAWA M, et al. Heat transfer characteristics of slush nitrogen in turbulent pipe flows[C]//Advances in Cryogenic Engineering. Seoul, Korea:AIP Publishing, 2008, 985:1141-1148.
[6] PARK Y M. Literature research on the production, loading, flow, and heat transfer of slush hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(23):12993-13003.
[7] YOON T K, LEE D R, CHA S K, et al. Survival rate of human oocytes and pregnancy outcome after vitrification using slush nitrogen in assisted reproductive technologies[J]. Fertility & Sterility, 2007, 88(4):952-956.
[8] OHIRA K, MATSUO S, FURUMOTO H. An experimental investigation of production and density measurement of slush hydrogen[J]. Cryogenics, 1994, 34(1):397-400.
[9] OHIRA K, NAKAGOMI K, TAKAHASHI N. Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow[J]. Cryogenics, 2011, 51(10):563-574.
[10] BAKER M J, DENTON T T, HERR C. An explanation for why it is difficult to form slush nitrogen from liquid nitrogen used previously for this purpose[J]. Cryobiology, 2013, 66(1):43-46.
[11] OHIRA K. Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen[J]. Heat Transfer-Asian Research, 2003, 32(1):13-28.
[12] ZHANG P, JIANG Y Y. Forced convective heat transfer of slush nitrogen in a horizontal pipe[J]. International Journal of Heat & Mass Transfer, 2014, 71(1):158-171.
[13] JIANG Y Y, ZHANG P. Density determination of slush nitrogen by the improved capacitance-type densimeter[J]. Experimental Thermal & Fluid Science, 2011, 35(2):328-337.
[14] 曹建,安刚,马晨辉,等.低温液位计[J].导弹与航天运载技术,2008,(6):52-54. CAO Jian, AN Gang, MA Chen-hui, et al. Low temperature liquid level indicator[J]. Missiles and Space Vehicles, 2008, (6):52-54.
[15] 马登奎,毕延芳,冯汉升,等.浮力式低温液位计的设计原理及运行工况分析[J].低温与超导,2009,37(7):16-19. MA Deng-kui, BI Yan-fang, FENG Han-sheng, et al. Design principles and operating conditions analysis of buoyancy cryogenic liquid level meter[J]. Cryogenics and Superconductivity, 2009, 37(7):16-19.
[16] PARK H C, JEONG H J, LEE C Y, et al. Liquid nitrogen level meter for high-temperature superconductor (HTS)[J]. Journal of Central South University of Technology, 2012, 19(11):3100-3104.
[17] KNIGHT B L, TIMMERHAUS K D, FLYNN T M. A superconducting liquid-Level sensor for slush hydrogen use[M].:Springer, Boston, MA, 1966, 218-222.
[18] LERSCH D, PASCOVICI G, BIRKENBACH B, et al. The liquid nitrogen fill level meter for the AGATA triple cluster detector[J]. Nuclear Instruments & Methods in Physics Research, 2011, 640(1):133-138.
[19] LEE C K, HWANG G W, JEONG S K. Development of cryogenic liquid-vapor separator and liquid-level meter operating under high pressure condition[J]. Progress in Superconductivity & Cryogenics, 2011, 13(1):51-55.
[20] 江芋叶,张鹏.氮浆电容式密度计及液位计的实验研究[J].低温与超导,2010,38(5):19-23. JIANG Yu-ye, ZHANG Peng. Study on the capacitance-type densimeter and liquid level meter for slush nitrogen[J]. Cryogenics and Superconductivity, 2010, 38(5):19-23.
[21] STEWART J W. Dielectric polarizability of fluid para-hydrogen[J]. Journal of Chemical Physics, 1964, 40(11):3297-3306. |