Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 719-726    DOI: 10.3785/j.issn.1008-973X.2018.04.015
土木工程     
活性MgO固化淤泥水稳特性试验研究
王东星1,2, 王宏伟1, 肖杰1
1. 武汉大学 岩土与结构工程安全湖北省重点实验室, 湖北 武汉 430072;
2. 重庆交通大学 水利水运工程教育部重点实验室, 重庆 400074
Experimental study on water stability property of dredged sludge solidified with reactive MgO
WANG Dong-xing1,2, WANG Hong-wei1, XIAO Jie1
1. Hubei Key Laboratory of Safety for Geotechnical and Structural Engineering, Wuhan University, Wuhan 430072, China;
2. Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
 全文: PDF(4330 KB)   HTML
摘要:

将绿色、低碳、环保的活性MgO引入淤泥固化处理,通过对比活性MgO、MgO-粉煤灰及传统固化剂水泥固化淤泥试样,分析不同浸水时间下试样外观、质量、应力-应变关系和无侧限抗压强度等性质,综合评价活性MgO基材料固化淤泥的水稳特性.结果表明:活性MgO固化淤泥水稳性显著优于未固化淤泥,且水稳性随掺入MgO质量分数和标准养护龄期的增加而增强;粉煤灰的加入可以显著改善活性MgO固化淤泥的抗压强度和水稳性;浸水时间增加对固化淤泥无侧限抗压强度呈削弱效应,提高掺入活性MgO质量分数可以减小固化淤泥破坏应变;整体上,活性MgO-粉煤灰固化淤泥水稳性优于活性MgO,活性MgO优于传统固化剂水泥.微观分析表明:Mg(OH)2和水化硅酸镁M-S-H等胶结物质是活性MgO和活性MgO-粉煤灰固化淤泥水稳性增强的最主要原因.

Abstract:

An experimental study was conducted to analyze the appearance, mass change, stress-strain relationship and unconfined compressive strength on the dredged sludge solidified with reactive MgO, MgO-fly ash and cement through full water immersion and unconfined compressive strength tests by introducing a low carbon, green and environmental-friendly binder. The obtained test results revealed the water stability performance of reactive MgO-solidified sludge. The water stability performance of reactive MgO-solidified sludge increases with MgO amount and curing time, and is evidently superior to non-solidified sludge. The addition of fly ash can greatly improve the compressive strength and water stability of reactive MgO-solidified sludge. The prolongation of water immersion duration weakens unconfined compressive strength of solidified sludge, while an increase in MgO mass fraction reduces its failure strain. The water stability of reactive MgO plus fly ash-solidified sludge is better than reactive MgO, which outperforms traditional at binder-cement on this point. The microstructural analysis indicates that Mg(OH)2 and M-S-H are the most important materials why the water stability of reactive MgO-and MgO plus fly ash-solidified sludge is greatly enhanced.

收稿日期: 2017-03-17
CLC:  TU447  
基金资助:

国家自然科学基金资助项目(51609180);湖北省自然科学基金资助项目(2016CFB115);水利水运工程教育部重点实验室开放基金资助项目(SLK2018A01).

作者简介: 王东星(1984-),男,博士(后),副教授,从事淤泥处理和软基处理等环境岩土工程研究.orcid.org/0000-0002-3522-3074.E-mail:dongxing-wang@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王东星, 王宏伟, 肖杰. 活性MgO固化淤泥水稳特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(4): 719-726.

WANG Dong-xing, WANG Hong-wei, XIAO Jie. Experimental study on water stability property of dredged sludge solidified with reactive MgO. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 719-726.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.015        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/719

[1] FÖRSTNER U, CALMANO W. Characterization of dredged materials[J]. Water Science and Technology, 1998, 38(11):149-157.
[2] 王东星, 徐卫亚. 固化淤泥长期强度和变形特性试验研究[J]. 中南大学学报:自然科学版, 2013, 44(1):332-339. WANG Dong-xing, XU Wei-ya. Experimental study on long-term strength and deformation properties of solidified sediments[J]. Journal of Central South University:Science and Technology, 2013, 44(1):332-339.
[3] 姬凤玲, 朱伟, 张春雷. 疏浚淤泥的土工材料化处理技术的试验与探讨[J]. 岩土力学, 2004, 25(12):1999-2002. JI Feng-ling,ZHU Wei,ZHANG Chun-lei. Study of treatment technology of dredging sludge with geosynthetizing method[J]. Rock and Soil Mechanics, 2004, 25(12):1999-2002.
[4] WANG D, WANG H, WANG X. Compressibility and strength behavior of marine soils solidified with MgO:a green and low carbon binder[J]. Marine Georesources and Geotechnology, 2017, 35(6):878-886.
[5] 朱伟, 张春雷, 高玉峰, 等. 海洋疏浚泥固化处理土基本力学性质研究[J]. 浙江大学学报:工学版, 2005, 39(10):1561-1565. ZHU Wei, ZHANG Chun-lei, GAO Yu-feng, et al. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(10):1561-1565.
[6] TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5):129-143.
[7] 刘松玉, 郑旭, 蔡光华, 等. 活性MgO碳化固化土的抗硫酸盐侵蚀性研究[J]. 岩土力学, 2016, 37(11):3057-3064. LIU Song-yu, ZHENG Xu, CAI Guang-hua, et al. Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils[J]. Rock and Soil Mechanics, 2016, 37(11):3057-3064.
[8] 于博伟, 杜延军, 刘辰阳, 等. 活性MgO碱性激发粒化高炉矿渣固化黏土的抗硫酸盐侵蚀试验研究[J]. 岩土力学, 2015, 36(增2):64-72. YU Bo-wei, DU Yan-jun, LIU Chen-yang, et al. Study of durability of reactive magnesia-activated ground granulated blast-furnace slag stabilized soil attacked by sulfate sodium solution[J]. Rock and Soil Mechanics, 2015, 36(supple.2):64-72.
[9] 王东星, 徐卫亚. 大掺量粉煤灰淤泥固化土的强度与耐久性研究[J]. 岩土力学, 2012, 33(12):332-339. WANG Dong-xing, XU Wei-ya. Research on strength and durability of sediments solidified with high volume fly ash[J]. Rock and soil mechanics, 2012, 33(12):332-339.
[10] ZENTAR R, WANG D, ABRIAK N E, et al. Utilization of siliceous-aluminous fly ash and cement for solidification of marine sediments[J]. Construction and Building Materials, 2012, 35:856-863.
[11] HORPIBULSUK S, MIURA N, NAGARAJ T S. Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis[J]. Géotechnique, 2003, 53(4):439-444.
[12] 丁建文, 张帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9):2817-2822. DING Jian-wen, ZHANG Shuai, HONG Zhen-shun, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9):2817-2822.
[13] MIURA N, HORPIBULSUK S, NAGARAJ T S. Engineering behaviour of cement stabilized clay at high water content[J]. Soils and Foundations, 2001, 41(5):33-45.
[14] SHAND M A. The chemistry and technology of magnesia[M]. New York:Wiley, 2006:231-238.
[15] JTG E40-2007, 公路土工试验规程[S]. 北京:中华人民共和国交通部,2007.
[16] WANG D, ABRIAK N E, ZENTAR R. Co-valorisation of Dunkirk dredged sediments and siliceous-aluminous fly ash using lime[J]. Road Materials and Pavement Design, 2013, 14(2):415-431.
[17] 沈旦申, 张荫济. 粉煤灰效应的探讨[J]. 硅酸盐学报, 1981, 9(1):61-67. SHEN Dan-shen, ZHANG Yin-ji. A study of the effects of fly ash[J]. Journal of the Chinese Ceramic Society, 1981, 9(1):61-67.
[18] JIN F, AL-TABBAA A. Strength and hydration products of reactive MgO-silica pastes[J]. Cement and Concrete Composites, 2014, 52(21):27-33.

[1] 胡亚元, 余启致, 张超杰, 钱镜林, 谢嘉祺. 纤维加筋淤泥固化土的邓肯-张模型[J]. 浙江大学学报(工学版), 2017, 51(8): 1500-1508.
[2] 康志军, 黄润秋, 卫彬, 谭勇. 上海软土地区某逆作法地铁深基坑变形[J]. 浙江大学学报(工学版), 2017, 51(8): 1527-1536.