[1] FÖRSTNER U, CALMANO W. Characterization of dredged materials[J]. Water Science and Technology, 1998, 38(11):149-157.
[2] 王东星, 徐卫亚. 固化淤泥长期强度和变形特性试验研究[J]. 中南大学学报:自然科学版, 2013, 44(1):332-339. WANG Dong-xing, XU Wei-ya. Experimental study on long-term strength and deformation properties of solidified sediments[J]. Journal of Central South University:Science and Technology, 2013, 44(1):332-339.
[3] 姬凤玲, 朱伟, 张春雷. 疏浚淤泥的土工材料化处理技术的试验与探讨[J]. 岩土力学, 2004, 25(12):1999-2002. JI Feng-ling,ZHU Wei,ZHANG Chun-lei. Study of treatment technology of dredging sludge with geosynthetizing method[J]. Rock and Soil Mechanics, 2004, 25(12):1999-2002.
[4] WANG D, WANG H, WANG X. Compressibility and strength behavior of marine soils solidified with MgO:a green and low carbon binder[J]. Marine Georesources and Geotechnology, 2017, 35(6):878-886.
[5] 朱伟, 张春雷, 高玉峰, 等. 海洋疏浚泥固化处理土基本力学性质研究[J]. 浙江大学学报:工学版, 2005, 39(10):1561-1565. ZHU Wei, ZHANG Chun-lei, GAO Yu-feng, et al. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(10):1561-1565.
[6] TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5):129-143.
[7] 刘松玉, 郑旭, 蔡光华, 等. 活性MgO碳化固化土的抗硫酸盐侵蚀性研究[J]. 岩土力学, 2016, 37(11):3057-3064. LIU Song-yu, ZHENG Xu, CAI Guang-hua, et al. Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils[J]. Rock and Soil Mechanics, 2016, 37(11):3057-3064.
[8] 于博伟, 杜延军, 刘辰阳, 等. 活性MgO碱性激发粒化高炉矿渣固化黏土的抗硫酸盐侵蚀试验研究[J]. 岩土力学, 2015, 36(增2):64-72. YU Bo-wei, DU Yan-jun, LIU Chen-yang, et al. Study of durability of reactive magnesia-activated ground granulated blast-furnace slag stabilized soil attacked by sulfate sodium solution[J]. Rock and Soil Mechanics, 2015, 36(supple.2):64-72.
[9] 王东星, 徐卫亚. 大掺量粉煤灰淤泥固化土的强度与耐久性研究[J]. 岩土力学, 2012, 33(12):332-339. WANG Dong-xing, XU Wei-ya. Research on strength and durability of sediments solidified with high volume fly ash[J]. Rock and soil mechanics, 2012, 33(12):332-339.
[10] ZENTAR R, WANG D, ABRIAK N E, et al. Utilization of siliceous-aluminous fly ash and cement for solidification of marine sediments[J]. Construction and Building Materials, 2012, 35:856-863.
[11] HORPIBULSUK S, MIURA N, NAGARAJ T S. Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis[J]. Géotechnique, 2003, 53(4):439-444.
[12] 丁建文, 张帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9):2817-2822. DING Jian-wen, ZHANG Shuai, HONG Zhen-shun, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9):2817-2822.
[13] MIURA N, HORPIBULSUK S, NAGARAJ T S. Engineering behaviour of cement stabilized clay at high water content[J]. Soils and Foundations, 2001, 41(5):33-45.
[14] SHAND M A. The chemistry and technology of magnesia[M]. New York:Wiley, 2006:231-238.
[15] JTG E40-2007, 公路土工试验规程[S]. 北京:中华人民共和国交通部,2007.
[16] WANG D, ABRIAK N E, ZENTAR R. Co-valorisation of Dunkirk dredged sediments and siliceous-aluminous fly ash using lime[J]. Road Materials and Pavement Design, 2013, 14(2):415-431.
[17] 沈旦申, 张荫济. 粉煤灰效应的探讨[J]. 硅酸盐学报, 1981, 9(1):61-67. SHEN Dan-shen, ZHANG Yin-ji. A study of the effects of fly ash[J]. Journal of the Chinese Ceramic Society, 1981, 9(1):61-67.
[18] JIN F, AL-TABBAA A. Strength and hydration products of reactive MgO-silica pastes[J]. Cement and Concrete Composites, 2014, 52(21):27-33. |